
Nutch: A Flexible and Scalable
Open-Source Web Search Engine

Rohit Khare, Ph.D., CommerceNet Labs
Doug Cutting, Nutch Organization
Kragen Sitaker, CommerceNet Labs
Adam Rifkin, CommerceNet Labs

CommerceNet Labs Technical Report 04-04
November 2004

1. ABSTRACT
Nutch is an open-source Web search engine that can be
used at global, local, and even personal scale. Its initial de-
sign goal was to enable a transparent alternative for global
Web search in the public interest — one of its signature
features is the ability to “explain” its result rankings. Recent
work has emphasized how it can also be used for intranets;
by local communities with richer data models, such as the
Creative Commons metadata-enabled search for licensed
content; on a personal scale to index a user's files, email,
and web-surfing history; and we also report on several
other research projects built on Nutch. In this paper, we
present how the architecture of the Nutch system enables
it to be more flexible and scalable than other comparable
systems today.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval] Systems and
Software—World Wide Web; H.3.3 [Information Storage
and Retrieval] Information Search and Retrieval—Search
Process; K.6.3 [Management of Computing and Informa-
tion Systems] Software Management—Software develop-
ment

General Terms
Design, Documentation, Experimentation

Keywords
Open Source Software, Web Search, Software Architecture

2. INTRODUCTION
Nutch is a complete open-source Web search engine pack-
age that aims to index the World Wide Web as effectively as
commercial search services [9]. As a research platform it is
also promising at smaller scales, since its flexible architec-
ture enables communities to customize it; and can even
scale down to a personal computer.

Its founding goal was to increase the transparency of the
Web search process as searching becomes an everyday
task. The nonprofit Nutch Organization supports the open-

source development effort as it addresses significant tech-
nical challenges of operating at the scale of the entire pub-
lic Web. Nutch server installations have already indexed
100M-page collections while providing state-of-the-art
search result quality.

At the same time, smaller organizations have also adopted
Nutch for intranet and campus networks. At this scale, all of
its components can run on a single server.

Figure 1: A Nutch-powered search engine for Creative Commons

More significantly, Nutch makes it easy to customize the
search process for particular kinds of content, such as a
recent Creative Commons search engine that can query
using intellectual-property licensing constraints (see Figure
1).

This trend inspired our own experiment to apply Nutch at
personal scale at CommerceNet. We hypothesized that the
same architecture used to run public search engines on
dedicated hardware ten years ago might be ready to run as
a background task on a laptop. We also evaluated how
Nutch could adapt to the distinct hypertext structure of a
user’s personal archives.

We also suggest that there are intriguing possibilities for
blending these scales. In particular, we extended Nutch to
index an intranet or extranet as well as all of the content it

CN-TR 04-04: Nutch: A Flexible and Scalable Open-Source Web Search Engine 2

Nutch: A Flexible and Scalable Open-Source Web Search Engine

Rohit Khare
CommerceNet Labs
510 Logue Avenue

Mountain View, CA 94043
+1 (650) 714-5529

rohit@commerce.net

Doug Cutting
Nutch Organization

PO Box 5633
Petaluma, CA 94955
+1 (707) 696-8996

cutting@nutch.org

Kragen Sitaker
CommerceNet Labs
510 Logue Avenue

Mountain View, CA 94043
+1 (415) 505-1494

kragen@commerce.net

Adam Rifkin
CommerceNet Labs
510 Logue Avenue

Mountain View, CA 94043
+1 (650) 906-4652

adam@commerce.net

links to. This sort of ‘neighborhood’ search helps visitors
explore an organization’s collective memory.

Furthermore, many other academic and industrial research
projects are building upon Nutch to explore aspects of Web
search, from integration with document summarizers to
teaching graduate courses in data mining.

This paper motivates Nutch in the context of other hyper-
text search research; describes its internal architecture and
behavior; evaluates how that architecture supports or con-
flicts with the requirements of global-, local-, and personal-
scale hypertext search problems; reports on how it has
been adopted by other researchers and users; and reflects
upon future directions.

Table 1: Comparing open-source text indexing packages.

Glimpse Namazu MG4J Lucene

Key
Feature Suffix arrays

Japanese
support

Compact
storage

Native Uni-
code

License Nonprofit use GPL LGPL Apache

Active No No Yes Yes

3. BACKGROUND
The Nutch project grew out of the first author’s experience
developing Lucene [13], a Java text indexing library that
became part of the Apache Jakarta open source project.
Lucene was his fourth major information retrieval system,
building on over fifteen years of work for Excite’s search
engine [14]; Apple’s first indexing service, V-Twin [48] (now
succeeded by SearchKit [3]); and work at Xerox PARC.

A decade ago, the first public Web search engine, Web-
crawler [44], was built on the NeXTStep IndexingKit. Follow-
ing that example, Nutch has also turned Lucene into a Web
search engine by adding crawling, parsing, graph analysis,
and a user interface.

3.1 Desiderata
When AltaVista launched in 1995, whole-Web search was
just blue-sky research speculating that it might be compu-
tationally feasible to index the whole Web; today it is a
global industry worth more than a hundred billion dollars
[6]. In less than ten years, Web search has evolved from an
intellectual exercise in computer science to an everyday
practice in the developed world – more than three-
quarters of American internet users use a search engine
each month. Today, Web search is redefining the frontiers of
extremely-large-scale distributed systems.

Nutch provides a transparent alternative to com-
mercial web search engines. Only open source search
results can be fully trusted to be without bias. (Or at
least their bias is public.) All existing major search

engines have proprietary ranking formulas, and will
not explain why a given page ranks as it does. Addi-
tionally, some search engines determine which sites
to index based on payments, rather than on the mer-
its of the sites themselves. Nutch, on the other hand,
has nothing to hide and no motive to bias its results
or its crawler in any way other than to try to give
each user the best results possible.

— www.nutch.org

Transparency is essential to the operation of a free society,
and it is as essential for societal infrastructure software as
anything else. Ken Thompson’s Turing Award lecture [52] is
a classic warning that it can be unsafe to rely on any soft-
ware without verifying it all the way down to the bare
metal. Can we prove or disprove claims of, say, right-wing
bias in automated news mining [30].

The Nutch team is committed to a transparent develop-
ment process. However, they have chosen to encourage
developers with a liberal license similar to that of the
Apache Software Foundation, rather than legally mandat-
ing source sharing.

Nutch aims to enable anyone to easily and cost-
effectively deploy a world-class web search engine.
This is a substantial challenge. To succeed, Nutch
software must be able to:

• fetch several billion pages per month

• maintain an index of these pages
• search that index up to 1000 times per second
• provide very high quality search results

• operate at minimal cost

— www.nutch.org

Table 2: Comparing open-source hypertext indexing packages.

WebGlimpse ht://Dig SWISH-E Nutch

Key Feature Suffix arrays Simplicity Metadata Ranking,
Excerpts

License Nonprofit use GPL GPL/LGPL Apache

Active No No Yes Yes

Crawling Local file-
system only

Intranet
only

Intranet
only

All scales

Caching No No No Yes

Clustering No No No Yes

Link Rank No No No Yes

Nutch has also set clear technical goals for itself, related to
feasibility (ability to it operate at this scale at all); and econ-
omy (ability to operate efficiently enough to be practical).

All the same, the task itself is becoming easier as the com-
munity matures and computers grow steadily more power-

CN-TR 04-04: Nutch: A Flexible and Scalable Open-Source Web Search Engine 3

ful. Apparently, even a lone college graduate can create a
profitable 600M-page search engine from scratch in C++
today (Gigablast, [27]). The nonprofit Internet Archive even
passed the 10B-page mark [43]!

3.2 Related Work
Many search engines have source code available for at least
non-commercial use, spanning the scale from simple text
indexers to full-fledged web search engines; they also
compete with proprietary software and appliances for the
so-called “Enterprise Search Platform” market [22].

Open-Source Text Indexing. Table 1 surveys source-
available full-text search systems in use today: Glimpse [34],
Namazu [38], the Managing Gigabytes/MG4Java system [7],
and Lucene [13].

Lucene is an unusually flexible text search engine: it in-
dexes incrementally, with small indexes (~30% of original);
runs in very little RAM (independent of corpus size); sup-
ports arbitrary boolean queries across multiple user-
defined document fields; returns results ordered by rele-
vance; and supports user-defined lexical analysis and
stemming algorithms. It is well-regarded enough that it has
even been re-implemented in several more languages: C++
(CLucene), C# (NLucene, Lucene.net), Python (Lupy), Perl
(Plucene, Lucene::QueryParser), and Ruby.

Open-Source Hypertext Indexing. Searching the Web
requires a text-search engine, but it also requires an effi-
cient and robust web crawling system, capable of saturat-
ing available network bandwidth, refreshing pages intelli-
gently, obeying the Robot Exclusion Standard, choosing
high-quality new pages to explore, using disk space effi-
ciently, and continuing to function even in the face of un-
expectedly large documents, slow Web servers, broken
links, thousands of URLs for the same document, and cor-
rupted documents. It must also let users invoke a text
search and view the results. Finally, the hypertext nature of
the Web offers additional opportunities for result im-
provement over a simple text-search engine, including link-
text indexing and link structure analysis. It’s a major engi-
neering effort, even starting with a text indexer.

A number of Web search systems are in wide use today,
including WebGlimpse (though it has significant license
constraints) [33], ht://Dig [36], Swish-E [46], and Nutch [12].
Nutch offers high-quality excerpting, link-structure analysis,
link-text indexing, relevance-ordered search results, con-
tent caching, and built-in support for parallelization on a
cluster in order to index crawls two orders of magnitude
larger than any of these other systems.

4. ARCHITECTURE
Nutch has a highly modular architecture that uses plug-in
APIs for media-type parsing, HTML analysis, data retrieval

protocols, and queries [40]. The core has four major com-
ponents:

Searcher: Given a query, it must quickly find a small rele-
vant subset of a corpus of documents, then present them.
Finding a large relevant subset is normally done with an
inverted index of the corpus; ranking within that set to
produce the most relevant documents, which then must be
summarized for display.

Indexer: Creates the inverted index from which the
searcher extracts results. It uses Lucene storing indexes.

Database: Stores the document contents for indexing and
later summarization by the searcher, along with informa-
tion such as the link structure of the document space and
the time each document was last fetched.

Fetcher: Requests web pages, parses them, and extracts
links from them. Nutch’s robot has been written entirely
from scratch.

Figure 2 outlines the relationships between elements that
refer on each other, placing them in the same box, and

those they depend on in a lower layer. For example, proto-

col does not depend on net, because protocol is only an
interface point for plugins that actually provide much of
Nutch’s functionality.

tools Web UI

indexer searcher analysis

lucene

fetcher parse

db
fs

protocol
ipc

net io plugin

util

Figure 2: Layer diagram of Nutch package dependencies.

4.1 Crawling
An intranet or niche search engine might only take a single
machine a few hours to crawl, while a whole-web crawl
might take many machines several weeks or longer. A sin-
gle crawling cycle consists of generating a fetchlist from
the webdb, fetching those pages, parsing those for links,
then updating the webdb.

In the terminology of [4], Nutch's crawler supports both a
crawl-and-stop and crawl-and-stop-with-threshold (which
requires feedback from scoring and specifying a floor).

It also uses a uniform refresh policy; all pages are refetched
at the same interval (30 days, by default) regardless of how

CN-TR 04-04: Nutch: A Flexible and Scalable Open-Source Web Search Engine 4

frequently they change There is no feedback loop yet,

though the design of Page.java can set individual

recrawl-deadlines on every page).

The fetching process must also respect bandwidth and
other limitations of the target website. However, any polite
solution requires coordination before fetching; Nutch uses
the most straightforward localization of references possi-
ble: namely, making all fetches from a particular host run on
one machine.

4.2 Indexing Text
Lucene meets the scalability requirements for text indexing
in Nutch. Nutch also takes advantage of Lucene’s multi-field
case-folding keyword and phrase search in URLs, anchor
text, and document text. The typical definition of Web
search does not require some index types Lucene does not
address, such as regular-expression matching (using, say,
suffix trees) or document-similarity clustering (using, say,
term-vectors).

4.3 Indexing Hypertext
Lucene provides an inverted-file full-text index, which suf-
fices for indexing text but not the additional tasks required
by a web search engine. In addition to this, Nutch imple-
ments a link database to provide efficient access to the
Web's link graph, and a page database that stores crawled
pages for indexing, summarizing, and serving to users, as
well as supporting other functions such as crawling and
link analysis. In the terminology of one web search engine
survey [4], Nutch combines the text and utility databases
into its page database.

Nutch also has to add support for HTML extraction to Lu-
cene. When a page is fetched, any embedded links are con-
sidered for addition to the fetchlist and that link’s anchor
text is also stored. What is eventually indexed by Lucene is
only the text of a Web page, though: while a high-fidelity
copy is stored in the page database, font, heading, and
other structural information does not propagate to the
Lucene indexing layer.

4.4 Removing Duplicates
The nutch dedup command eliminates duplicate docu-
ments from a set of Lucene indices for Nutch segments, so
it inherently requires access to all the segments at once. It's
a batch-mode process that has to be run before running
searches to prevent the search from returning duplicate
documents. It uses temporary files containing the 5-tuple

(MD5 hash, float score, int indexID, int do-

cID, int urlLen) for each page

.Listing 1: Pseudocode for removing pages with the same URL.

Presumably the documents with the same URLs were
fetched at different times, so Nutch tries to sort the records
so that the ones for the newest fetches come first. A sec-

ond pass, using hash=MD5(content) and slightly different

sorting rules, eliminates multiple URLs for the same docu-
ment from the index.

4.5 Link Analysis
Nutch includes a link analysis algorithm similar to PageR-
ank [42] It even uses .15 as the random-jump probability

(called DECAY_VALUE here). It is performed by the Dis-

tributedAnalysisTool; even the single-machine

LinkAnalysisTool merely calls into it. It uses an iterative
method, rather than, say, solving for a matrix eigenvalue
directly [29]. Nutch has already demonstrated the ability to
harness multiple servers to compute link ranking for 100M-
page subsets of the World Wide Web.

Distributed link analysis is a bulk synchronous parallel
process. At the beginning of each phase, the list of URLs
whose scores must be updated is divided up into many
chunks; in the middle, many processes produce score-edit
files by finding all the links into pages in their particular
chunk. At the end, an updating phase reads the score-edit
files one at a time, merging their results into new scores for
the pages in the web database.

Distributed analysis doesn’t use Nutch’s homegrown IPC
service; like fetching, work is coordinated through the ap-
pearance of files in a shared directory. There are better
techniques for distribution (MapReduce, [15]) and acceler-
ating link analysis [26].

4.6 Searching
Nutch's search user interface runs as a Java Server Page
(JSP) that parses the user's textual query and invokes the

search method of a NutchBean. If Nutch is running on a
single server, this translates the user's query into a Lucene
query and gets a list of hits from Lucene, which the JSP
then renders into HTML. If Nutch is instead distributed

across several servers, the NutchBean's search method
instead remotely invokes the search methods of other

NutchBeans on other machines, which can be configured

to eliminate URL duplicates from a segmentsDir:
 open a temporary file
 for each segment:
 for each document in its index:
 append a tuple for the document to the
 temporary file, with hash=MD5(URL)
 close the temporary file
 sort the temporary file by hash
 for each group of tuples with the same hash:
 for each tuple but the first:
 delete the specified document
 from the index

CN-TR 04-04: Nutch: A Flexible and Scalable Open-Source Web Search Engine 5

either to perform the search locally as described above or
farm pieces of the work out to yet other servers.

Distributed searching is built on top of a custom SIMD clus-

ter parallelism toolkit in the package net.nutch.ipc,
which provides a blocking 'call' method to perform the
same operation in parallel across several servers, then
gather the results together afterwards. In the terminology
of [49] Nutch uses partition-by-document, where all the
postings for a certain document are stored on the same
node. Consequently every query must be broadcast to all
nodes. In Nutch, the

net.nutch.searcher.DistributedSearch.Client
class provides this functionality; it implements the same

net.nutch.searcher.Searcher interface that Nutch

uses to invoke searches on locally-stored segments, repre-

sented by net.nutch.searcher.FetchedSegments ob-
jects.

4.7 Summarizing
Summaries on a results page are designed to avoid click-
throughs. By providing as much relevant information as
possible in a small amount of text, they help users improve
precision.

Nutch's summarizer works by retokenizing a text string
containing the entire original document, extracting a
minimal set of excerpts containing five words of context on
each side of each hit in the document, then deciding which
excerpts to include in the final summary. It orders the ex-
cerpts with the best ones first, preferring longer excerpts
over shorter ones, and excerpts with more hits above ex-
cerpts with fewer, and then it truncates the total summary
to a maximum of twenty words.

Currently, Nutch considers equal-length excerpts contain-
ing the same number of hits to be duplicates and only
keeps the first one for the summary, resulting in a predict-
able, if less useful, display.

Future content-type-specific summarizer modules could
provide specialized presentations for email messages; but
that would require changing the interface to the summa-
rizer.

To distribute the workload, summarizing hits for the results
page requires extracting excerpts from the original docu-
ments. Since those documents are stored at various nodes
in the Nutch cluster, they must either be copied across the
network and summarized on the machine conducting the
search, or summarized on the machines that store them
and the summaries copied across the network; Nutch chose
the latter strategy.

5. GLOBAL SCALE
The original motivation for the Nutch project was to pro-
vide a transparent alternative to the growing power of a
handful of private search services over most users’ view of
the Web. However, as Nutch has been adopted with greater
enthusiasm by smaller organizations, the Nutch Organiza-
tion has de-emphasized operating a multi-billion-page
index in the public interest.

5.1 Experience from Yahoo!
Research Labs

When the Nutch project was publicly announced in June
2003, Overture Inc. sponsored a public trial of a 100M-page
index that was online at Yahoo! Research Labs until No-
vember 2004 [41]. It was based on a very early version of
the code and had not been re-crawled or maintained since
October 2003; a recent search for “http” suggested that only
60M pages remained online and link-analysis scores had
only been applied to portions of the index.

The major contribution of this experiment was to establish
that a free Java-based package was capable of scheduling,
fetching, and indexing a very large crawl. It is instructive to
consider its strengths, weaknesses, and omissions. To its
credit, Nutch did complete a significant crawl using the
Open Directory Project as a seed list, and it manages a
cache of the content it fetched. This experiment did not
address concurrent query rates; while it established that a
Nutch query can be sent to several independent back-end
query servers and the results can be merged and excerpts
generated within a second, there was no performance
analysis of a separate web server farm that would be nec-
essary to process thousands of concurrent queries against
the same index. The goals that were set for testing at global
scale were:

 Scale-up fetching: multiple, simultaneous page fetches
(>100 pages/sec/node, or 10M/day).

 Scale-out indexing: parallel, distributed webdb update
that can process 100M entries (>100 pages/sec/node).

 Scale-out querying: each search node would have to
process 1-40 queries/sec against 2M-20M pages.

Ironically, one of the weakest points of this Nutch experi-
ment is its signature feature, the ability to “explain” its rank-
ings. A search for the word “nutch” yielded a seemingly
bizarre top-ranked hit: CBS Sportsline. However, the excerpt
indicated the term is used six times on the page body.
Since it is a dynamically generated news site, we compared
it to the cached source file that was indexed originally in-
stead, but the term still didn’t occur there.

It turns out that this was an interaction between the Nutch
crawler, the Mircosoft Web server that Sportsline was using,
and how pages were cached for later display. Since some of

CN-TR 04-04: Nutch: A Flexible and Scalable Open-Source Web Search Engine 6

its “browser-detection” code in an HTML page echoed the
User-Agent string, the term “nutch” occurred multiple times
– but the <SCRIPT> elements were also being stripped
from the cached pages.

Furthermore, the “explain” link itself brought up a page that
has not improved significantly since: a very cryptic equa-
tion involving tf (term frequency), idf (inverse document
frequency), and “boost” factors. The most a savvy web surfer
could probably garner from this is the top-level breakdown
of how often the term occurs within the page vs. in the
anchor text of links to that page. The link-graph analysis
scores, in particular, are inconsistent in ways that suggest
the collection has only been partially analyzed: some pages
still have the default score for pages found via same-site
links (0.5) or cross-site links (2.0). The bottom line, though,
was that searching for “nutch” would only return a list of the
most popular Web sites running that particular Web server
package!

To be sure, the two-year old Overture experiment is not the
only evidence of a 100M-page service. The KNOWITALL
research project [18] at the University of Washington oper-
ates an even larger crawl today for its students as well as
some public services [10].

5.2 Global-scale Challenges
 The essential challenge of a global-scale Web search serv-
ice is ranking relevant results – especially in the face of
organized resistance from so-called “link-spammers.” Nutch
includes much of the machinery to operate a global-scale
crawling and indexing operation. It even supports a basic
level of whole-Web link graph analysis along with many
tunable parameters for scoring results; current work with
Nutch even includes automatic tuning based on user feed-
back [25]. But precisely because Nutch is an open project,
global Web search engines based on it such as Mozdex [37],
risk escalating an “arms race between search engine and
spammer” [12].

Some “search-engine optimization” techniques are already
well-known; see [24] for an extensive discussion. It is be-
lieved that substantial portion of the R&D budgets of
commercial search services are dedicated to this problem
[6]. Consider even a simple cycle of escalation that Nutch
would have to address:

1. Webmaster repeats desired terms on a page. Search
service counters by eliminating consecutive occur-
rences of a term.

2. Webmaster includes irrelevant (but popular) passages
as “invisible” HTML. Search service counters by parsing
enough HTML to determine what a browser would
present.

3. Webmaster intersperses that term amongst “normal”
text. Search service counters by comparing statistical
distribution of terms to language-specific bench-
marks.

4. Webmaster detects crawler’s User-Agent and sends
decoy text instead. Search service counters by com-
paring variance of page content across browser types.

5. Webmaster sets up a “link farm” of interconnected sites
to increase incoming link count. Search service count-
ers by identifying statistically-unlikely graph struc-
tures…

However, as this cycle continues, each counter-move would
become clearly visible in the Nutch source code. However, if
the success of the open-source development community
with security breaches, bug detection, and email spam
filtering are any indication, openness works in practice (if
not in theory).

6. LOCAL SCALE: INTRANETS
An intranet is not merely a small subset of the global Web.
On one hand, it may be easier to crawl because it can be
spam-free and can be better structured (which suggests
using an interactive crawl planning tool like SPHINX [35]).
Furthermore, a simple intranet installation of Nutch is much
easier to configure, install, and maintain on a single server
than a distributed global-scale cluster. On the other,
smaller collection sizes (<1M pages) with sparse internal
linking can inhibit link analysis and places relatively greater
emphasis on anchor text indexing.

6.1 Experience at Oregon State
University

When the Open Source Lab at Oregon State University
began testing Nutch in mid-2004, the campus had already
installed a Google Search Appliance in 2002 [22] (before
that, they used another commercial solution from Inktomi
since 1998). In August 2004, OSU replaced it with Nutch,
citing its “flexibility and extensibility.”1

In June, their staff compared a search quality comparison
and found Nutch to be equal to Google’s quality [8]. Goo-
gle’s product included a synonym feature called KeyNames
that works like a sponsored link to promote a specific tar-
get page, but it was adopted spottily. Nutch, for its part,
returned too many similar pages. Aside from those issues,
though, they found the majority of the sample queries
awarded a perfect 10 to both engines in a subjective
evaluation. While they noted that Nutch was weaker on
spam detection and elimination, its greater transparency
influenced the final decision.

CN-TR 04-04: Nutch: A Flexible and Scalable Open-Source Web Search Engine 7

1 http://search.oregonstate.edu/about/

6.2 Experience at CommerceNet
We thought it would be useful to crawl not only the con-
tent on CommerceNet’s own sites, but also the pages our
collection linked to. This new blended-scale engine at
http://labs.commerce.net:8180/ has proven particularly
useful because its baseline crawl includes our collaboration
tools, a blog and a wiki that link to many other sites and
articles we collectively found noteworthy.

We changed 19 lines of code in four files to add this feature;
eight of these were just to add the property

db.one.hop.outside.desired to the

nutch-default.xml configuration file.

This uncovered one serious problem, apart from the fact

that this solution could not crawl n degrees beyond the
“fence” specified in an URL filter regular expression. Namely,
our blog contains enough comments spam that a notice-
able fraction of the collection was unwanted or obscene.
This is an annoyance in Web search, but has much more
serious consequences for personal-scale search. Letting a

fetcher blindly follow a link in an email spam can serve
notice that an address is working (and apparently belongs
to a very gullible consumer!).

6.3 Intranet-specific Challenges
When retreating from the public sphere to private uses,
new security and privacy issues come into focus. An organi-
zation’s intranet implies a boundary between authorized
insiders and outsiders; this can also extend to cover access
rights to other information services. At CommerceNet, we
were not able to delegate credentials to the Nutch fetcher
to retrieve content from some local password-protected
servers. Furthermore, if such support were built-in, it might
create the presumption that Nutch should continue to
enforce a security policy on the content once cached and
indexed locally.

That suggests an intranet Nutch deployment may need
individual user authorization to access subsets of a collec-
tion. An efficient suggestion for extending a UNIX
filesystem permission-like policy to Nutch might be to add

user and group fields to Lucene’s document indices with
tokens for each user. Then a query filter could force the
addition of restrictive clauses to every search based on
users’ credentials. This is similar to a query-expansion tech-
nique used in the next section for Creative Commons.

7. LOCAL SCALE: COMMUNITIES

7.1 Experience with Creative
Commons

Creative Commons is a nonprofit organization that pro-
motes the use of openly licensable content using a small

set of codes for indicating attribution, royalty, and other
policy constraints. It helps users find content they can re-
use, like songs that can be sampled, art that can be clipped,
and text that can be excerpted:

"Show me all photos of Paris that I can make deriva-
tive works from and sell afterwards"

"I'd like to find songs about Love that I can remix"

"Find me some CC-licensed music videos"

"Has anyone ever written about the Statue of Lib-
erty?"

It recently announced a nearly 1M-page Nutch-based
search engine that crawls the public Web looking for CC-
licensed content, indexing license properties and text, and
making it all searchable with a visual icon language inte-
grated into its search results (see Figure 1).

7.1.1 How the Creative Commons Plug-in
Works

This demonstrates how easily Nutch can be extended to
accommodate metadata that would be hard to with any
other search engine. There are only about 500 lines of CC-
specific code.

The Creative Commons plugin includes three main pieces:
the indexing filter, the HTML parsing filter, and the query
filter. The HTML parsing filter, along with any other regis-
tered HTML parsing filters, has the opportunity to add me-
tadata or other data to the parse data that gets serialized
and ultimately handled by the indexing phase. Similarly, the
indexing filter adds fields to a Lucene Document after ex-
amining Nutch parse and fetcher output, and the query

filter adds clauses to a Lucene BooleanQuery after examin-

ing a Nutch Query. In fact, plug-ins do nearly all of the con-
struction of parse data and Lucene documents and queries;

for example, there's a BasicIndexingFilter plugin that
populates the "url", "content", and "anchor" fields of the

Lucene document index, and a BasicQueryFilter plugin
that searches them (see Listing 2.)

CN-TR 04-04: Nutch: A Flexible and Scalable Open-Source Web Search Engine 8

Listing 2: Simplified HTML parsing plug in code for
extracting Creative Commons licenses.

The “Walker” here is a visitor class that walks a DOM tree,
searching for certain kinds of links used for Creative
Commons licenses. The “filter” method is the external inter-
face for HTML parsing plugins (see Listing 3).

Listing 3: Simplified IndexingFilter code
for the Creative Commons plug-in.

7.2 Community-specific Challenges
Unique user communities have idiosyncratic requirements.
Semantic tagging systems such as SemTag [16] could be
used in conjunction with shared community knowledge to
offer richer customization of Nutch components such as
analysis.

Metadata Communities have unique document metadata,
as the Creative Commons experience demonstrated. Un-
like PICS, though, since true parameterization points to-

public static String FIELD = "cc";
public Document filter(Document doc, Parse parse,
FetcherOutput fo) {
 String licenseUrl = parse.getData().get("License-Url");
 if (licenseUrl != null) {
 /* Add the features represented by a license URL.
 * Urls are of the form
 * "http://creativecommons.org/licenses/xx-xx/xx/xx",
 * where "xx" names a license feature. */
 URL url = new URL(urlString);
 // tokenize the path of the url,
 // breaking at slashes and dashes
 StringTokenizer names = new
 StringTokenizer(url.getPath(), "/-");
 if (names.hasMoreTokens())
 names.nextToken(); // throw away "licenses"
 // add a feature per component after "licenses"
 while (names.hasMoreTokens()) {
 doc.add(Field.Keyword(FIELD, names.nextToken()));
 }
 }
 return doc;
}

public static void walk(Node doc, URL base,
Properties metadata) {
 // walk the DOM tree, scanning for license data
 Walker walker = new Walker(base);
 walker.walk(doc);
 // interpret results of walk
 String licenseUrl = null;
 if (walker.rdfLicense != null) {
 // 1st choice: subject in RDF
 licenseUrl = walker.rdfLicense;
 } else if (walker.relLicense != null) {
 // 2nd: anchor w/ rel=license
 licenseUrl = walker.relLicense.toString();
 } else if (walker.anchorLicense != null) {
 // 3rd: anchor w/ CC license
 licenseUrl = walker.anchorLicense.toString();
 }
 if (licenseUrl != null) {
 metadata.put("License-Url", licenseUrl);
 }
}

wards typed fields and relational databases; the sweet spot
for Nutch is metadata that fits within Lucene’s model of the
world, namely keyword/full-text search of fields.

Semantics Ultimately, what ties together communities is
common semantics, which in turn can be used to offer
more comprehensive and custom search. Paul Ford pointed
out [20] that, “Lucene's relationship to the Semantic Web
may seem unclear -- after all, the Semantic Web is about
resource discovery by analyzing triples, not full-text search.
However, along with URIs, literal values make up a good
portion of RDF, and Lucene offers an easily embeddable
means to provide for search within those literal values.
Most notably, Lucene is integrated into Kowari, where it
allows for combinations of graph-based querying and old-
fashioned keyword lookup.”

Internationalization Nutch supports automatic identifica-
tion of and search on document language, its user interface
is available in 13 languages, and it supports search in most
Western languages reasonably well. However, it still needs
significant work to improve its search quality in many lan-
guages. Special code is needed to perform morphological
analysis of CJKV (Chinese, Japanese, Korean, and Vietnam-
ese) languages and agglutinative languages such as Ger-
man, and language-sensitive stemming is extremely impor-
tant for highly inflected languages such as Finnish.

8. PERSONAL SCALE
The World Wide Web can also be a lens for viewing an indi-
vidual’s personal information management needs. Many
desktop applications available on all major PC operating
systems that can search files on a hard drive (e.g. [17]). We
believe that files-in-folders is only one approximation of a
much richer Personal Web that connects files, email, at-
tachments, contacts, and, yes, all the public Web pages read
before in a socially-connected graph. As PCs grow more
powerful, it may become reasonable to accommodate an
efficient implementation of the entire machinery of a Web
search engine as a background task.2

8.1 Experience on a Local
Filesystem

Our first experiment was to expose a local filesystem using
Apache[51], and seed Nutch with a localhost URL. A hard
drive controlled by the user, however, is quite different from
the hostile, messy public Web, and several Nutch self-
protection mechanisms interacted poorly with it:

- It didn’t crawl all the files in large directories;

The db.max.outlinks.per.page default is 100.

- It didn’t index complete documents;

The http.content.limit default is 64K.

CN-TR 04-04: Nutch: A Flexible and Scalable Open-Source Web Search Engine 9

2 http://www.tbray.org/ongoing/When/200x/2003/07/30/OnSearchTOC

- It indexed entire mailboxes as a single document;
A replacement mail-specific parser would make two
passes, to extract the link structure and then to “fetch”
each message.

- It took days to complete a crawl;
Out of politeness, the minimum delay between fetches
from the same webserver is 1 second.

- It duplicated every file;
Since Web sites are unreliable, Nutch quite sensibly
caches copies of all fetched content.

- It can’t forget files easily;
Private information that inadvertently gets indexed
may remain visible even after the original is deleted.

These problems are all easily addressed — many were
solved by using a file: protocol plug-in rather than using
HTTP — but this litany of problems highlights how differ-
ent the personal-scale is from the global-scale problem.
There are also benefits to using global-scale techniques in
this domain, though. A minor example is that since Lucene
indexes words in an URL field along with document text, a
single interface can search for both matching filenames
and file contents, which are often two separate modes on
other search tools (e.g. grep vs. locate [32]). A more promis-
ing one is link analysis: while explicit hyperlinks between
local files are too sparse to apply Web techniques effec-
tively, there is a much richer social connectivity graph be-
tween conversations held in email and through attach-
ments that appears promising.

Keeping copies of everything is unnecessary when the
original files are at hand – there’s even an (as yet unimple-
mented) preference-setting in the code which clearly sug-

gests interest (file.content.ignored in

nutch-default.xml).

Installation is another challenge. Nutch itself is only 500K,
hardly bigger than Google Desktop Search at 400K [45].
Running it, though, requires a user interface, which needs
servlet container,

such as Tomcat (another 1.8MB); and a slew of other librar-
ies that inflate the Nutch web archive file to more than 5MB
(Figure 3).

10%

22%

7%

9%

10%

0%

33%

6%

3%

Nutch: 500K

Lucene: 300K

Creative Commons plugin: 9K

Word Parser: 1100K

commons-net (FTP): 160K

PDFBox: 1700K

log4j (errors): 330K

DOM4J: 470K

Documentation & etc.: 500K

Figure 3: Component sizes in a Nutch installation.

Miniaturizing a personal-scale Nutch could be done by
replacing components with services provided by the desk-
top OS. By way of comparison, Google Desktop Search ap-
pears to use COM to call existing Windows services for text
extraction and network access.

8.2 Personal-scale Challenges
A mailbox is an archetypal example of a document with
many authors. Many other artifacts that are not traditional
hypertext documents also have implicit authorship links:
instant messages, buddy lists, version-control change logs,
blog entries, calendar items, and photos are only a few ex-
amples.

Email quotation is the equivalent of a hyperlink citation. A
single email message can include text from multiple
authors. Unlike the Web convention that citation is an en-
dorsement, research into community-clustering shows that
on USENET discussions, quotation should be interpreted as

disapproval [1].

There are several limitations to analyzing email messages
using tools such as pipermail or MHonarc:

- There is no link between articles to the individuals that
wrote them — mailto: links aren’t followed and ranked
like http:.

- “Thread,” “Date,” and “Author” index pages only serve
to confound the ranking of individuals, threads, and
messages by combining all of them on an equal basis
in one file.

- There is no immediately obvious way to strip out the
purely “navigational” link, which tend to emphasize
adjacent messages in time rather than by thread.

- There is no obvious way to “backpropagate” scores
from the sites an email message cites. A message that
cites the New York Times should be more valuable, no
less. With a copy of the entire World Wide Web link
graph, the hubs-and-authorities model would address
this [28].

- There is little precedent for increasing the rank of a
message the more often a user refers back to it, or

CN-TR 04-04: Nutch: A Flexible and Scalable Open-Source Web Search Engine 10

based on the fraction of included links the user has
clicked through.

Even Zoë [50], which also uses Lucene to power a new kind
of blog-like user interface to email and represents social
connections with links, does not take advantage of link
analysis algorithms to rank messages. We wrote a script
that turned 1GB of personal email into ~150K files for each

message and correspondent. By linking threads, authors,
and readers (and no navigation), we were able to experi-
ment with Nutch’s analysis of a “social network.”

9. REFLECTIONS
Nutch is simultaneously more transparent, flexible, and
scalable than other Web search solutions. It has already
demonstrated three orders of magnitude greater capacity
than other open source engines; it is more flexible than
earlier open-source information retrieval systems; and it is
more transparent and flexible than proprietary Web search
sites.

9.1 Flexibility
Nutch’s value as an experimental platform has already been
borne out by its increasing adoption in niche communities,
digital libraries, classrooms, and academic research pro-
jects.

Webmasters: By empowering small websites to not only
add search capabilities to their own content, but also easily
crawl any part of the Web they or their readers care about,
Nutch has enabled a number of new niche search services.
The Linux Search Engine3 is a focused subset of Ob-
jectsSearch,4 a commercial company running a public
search engine over 1M-pages. This company has both em-
braced the Nutch’s mission of transparency — uniquely
amongst Nutch adopters, they left the “explain” links on —
but also extended the search process in innovative new
ways. They offer clustering, thumbnail previews of pages,
and “quickinfo,” a named entity extraction service for locat-
ing people and companies. Another example of a Nutch-
driven service that even offers anchor-text indexing of im-
ages is Playfuls, a gaming-specific service with a crisp mis-
sion:

“Playfuls.com is a specialized gaming search engine.
We don't search useless and off-the-topic websites.
You can be sure that all our results come from gam-
ing websites… Our news search database is updated

12 times a day, and our web search database is up-
dated every 48 hours.”5

An even smaller collection of interest is SearchMitchell
(Figure 4), a new-fangled old-fashioned small-town search
engine. At the other extreme, MozDex has taken on the
“public television” aspect of Nutch’s mission6 and built a
100M-page collection with advertising revenue (and with
the “explain” links intact). They use AMD Opteron servers for

CN-TR 04-04: Nutch: A Flexible and Scalable Open-Source Web Search Engine 11

3 http://www.objectssearch.com/linux/index.html

4 http://www.objectssearch.com/search.jsp?query=pink&clustering=yes&thumbshots=yes

5 http://static.playfuls.com/info/index.php?resource=whyplayfuls

6 http://www.mozdex.com/faq.html

back-end searching and crawling and AMD Athlon XPs for
front-end JSP servers (currently down for maintenance).

Librarians: The digital library community has its own in-
terests in large-scale information retrieval. The California
Digital Library eXtensible Text Framework (XTF [23]) and
the National Science Digital Library have also built search
engines based on Lucene.7 In NSDL’s case, they moved off
of a commercial solution for the three classic open-source
rationales: flexibility, low cost, and stability [39]. At the Uni-
versity of California, they modified the indexer to process
200-word chunks that make it easy to present hits in con-
text and navigate directly into large documents.8

Arguably, the ultimate scaling challenge in library science is
keeping up with electronic media, and the Internet Ar-
chive’s effort to catalog audio, video, and Web content for
future generations motivates several Nutch-based experi-
ments. They have URL-based retrieval of 40B past page
versions,9 had a (currently-offline) search over an 11B-page
archive,10 and are experimenting with Nutch over a 250K-
page UK test corpus.11 At the UC Santa Cruz School of En-
gineering, researchers are modifying Nutch to convert its
craws into Internet Archive-compatible ARC format.12 The
Chronica13 project at the University of San Francisco is in-
vestigating Nutch for a date-range constrained historical
search over ARCs as well.14

Figure 4: A Nutch-powered community search-engine for the Cham-
ber of Commerce of Mitchell, South Dakota.

Teachers: A cleanly-architected large software system is
also a pedagogical asset, particularly in a cutting-edge area
with few other textbook case studies. Nutch has already
appeared in course notes and homework assignments in
classes on data mining at Brooklyn Polytechnic,15 linguis-
tics at the University of Michigan,16 and artificial intelli-
gence at Indiana University,17 information retrieval at Ari-
zona State,18 and web services at University of
Washington.19

Researchers: A good measure of Nutch’s claim of flexibility
is the ability to build new experimental systems with it.
Nutch has already made a small but growing impact on the

CN-TR 04-04: Nutch: A Flexible and Scalable Open-Source Web Search Engine 12

7 http://search.comm.nsdl.org/cgi-bin/wiki.pl?LuceneIndexing

8 http://texts-stage.cdlib.org/search — CONFIDENTIAL until January 2005

9 http://wayback.archive.org/

10 http://recall.archive.org/

11 http://crawlprojects.archive.org/search.jsp?query=http

12 http://wiki.soe.ucsc.edu/bin/view/WA/OtherResources

13 http://chronica.cs.usfca.edu/chronica/

14 http://cs.usfca.edu/~rstevens/archiveproject/archives/000431.html

15 http://cis.poly.edu/suel/webshort/

16 http://tangra.si.umich.edu/~radev/LNI-winter2004/hw/hw3.pdf

17 http://www.cs.indiana.edu/classes/b659/final/total.ppt

18 http://rakaposhi.eas.asu.edu/s04-cse494-mailarchive/msg00029.html

19 http://www.cs.washington.edu/education/courses/cse454/04wi/project.html

Web search engineering literature. At Cornell, a CS profes-
sor’s investigation of how users’ clickthrough choices can
be used to feed back into relevance calculations [25] is
running on their library Web site with Nutch.20 MEAD, a
multi-document summarizer has been integrated with
Nutch to provide more detailed search hit excerpts [47].
Customizing link analysis to experiment with personalized
graph analysis in Nutch also holds promise [2]. A German
team built the geoPosition plugin21 to Nutch to provide
basic geographic distance-bounded search to a local
search engine.22

9.2 Scalability
As discussed in §4.1, Nutch hasn't scaled beyond 100 mil-
lion pages so far, for both economic and technical reasons.

Maintaining an up-to-date copy of the entire Web is inher-
ently an expensive proposition, costing substantial
amounts of bandwidth. (Perhaps 10 terabytes per month at
minimum, which is about 30 megabits per second, which
costs thousands of dollars per month)

Answering queries from the general public is also inher-
ently an expensive proposition, requiring large amounts of
computer equipment to house terabytes of RAM and large
amounts of electricity to power it [19]; as well as one to
three orders of magnitude more bandwidth.

• Nutch's link analysis stage requires the entire link data-
base to be available on each machine participating in
the calculation and includes a significant non-parallel
final collation step.

• Because Nutch partitions its posting lists across cluster
nodes by document, each query must be propagated to
all of the hundreds or thousands of machines serving a
whole-web index. This means that hardware failures will
happen every few hours, the likelihood of a single slow
response causing a query to wait several seconds for a
retransmission is high, and the CPU resources required to
process any individual query become significant.

• Because crawls retrieve unpredictable amounts of data,
load-balancing crawls with limited disk resources is diffi-
cult.

More prosaically, much of Nutch's distribution across clus-
ters must be done manually or by home-grown cluster-
management machinery; in particular, the distribution of
data files for crawling and link analysis, and the mainte-
nance of search-servers.txt files all must be done by hand.

Large deployments will require fault-tolerant automation
of these functions.

Further work is being done in this area to enhance Nutch's
scalability. The Nutch Distributed File System (NDFS, [11]) is
in current development versions of Nutch, to enhance per-
formance along the lines proposed by the Google File Sys-
tem [21]. NDFS has been used recently to run a link analysis
stage over 35 million pages on twelve machines.23

In the last several years, much work has focused on elimi-
nating economic scalability limitations on services such as
file downloading by distributing the work of providing the
service among its users. Until 2004, this has appeared tech-
nically infeasible for a full-text search engine for the whole
Web [31]. However, recent and ongoing work suggests that
this kind of peer-to-peer distribution may soon be possible
[49].

9.3 Transparency
Somehow, software can never be too flexible or too scal-
able, but there are recurrent fears that it can be too trans-
parent. We do not agree. Nutch is committed to an open
development culture that can fuel a positive feedback loop
between users, researchers, developers, and even spam-
mers that can complement – if not check – the growing
dominance of a few corporations in today’s Web search
marketplace.

For users, if Nutch cannot find relevant pages as well as
state-of-the-art commercial services, it may not get much
headway. Today, Nutch’s main line of defense against spam
is its link analysis — which spammers have been subvert-
ing since its advent. But we believe that if search has to rely
on secrecy to beat spam, then the spammers will probably
win.

For researchers, we hope to level the playing field with R&D
efforts behind corporate firewalls. If Nutch can showcase
academic advances more rapidly than other engines, and
more importantly, make it easy to combine elements of
multiple extensions in new experiments, it can help decen-
tralize the process of innovation.

For developers, we note that open source code does not
require open service. Many commercial ventures are al-
ready hosting proprietary extensions of Nutch, along with
proprietary crawl data to provide value to their customers
without being compelled to contribute those changes. We
hope they will, but Nutch’s license consciously reduces this
barrier to adoption.

CN-TR 04-04: Nutch: A Flexible and Scalable Open-Source Web Search Engine 13

20 http://kodiak.cs.cornell.edu:8080/search.jsp?query=ithaca

21 http://nutch.eventax.com/

22 http://www.UmkreisFinder.de/ — enter a city, a term, and choose a distance.

23 http://cvs.sourceforge.net/viewcvs.py/nutch/nutch/src/java/net/nutch/tools/DistributedAnalysisTool.java

For citizens, we acknowledge that Nutch, if successful, still
may not be an unalloyed good. The same tools that let a
dissident diaspora maintain a vibrant Web community
search engine also make it easier for authorities to create
their own selective views of the Web to index.

“Search is close to a duopoly. Historically we know
there are risks when that happens. It's too important
an application to not be transparent.”

— Mitch Kapor [5]

10.ACKNOWLEDGEMENTS
The authors would like to thank Mike Cafarella for working
with the first author on several prior articles that this paper
draws upon.

The Nutch Organization would also like to thank Overture
(now Yahoo!) for its generous support from the very begin-
ning of the project; its board members: Mitch Kapor, Tim
O'Reilly, Graham Spencer, Raymie Stata, and Peter Savich;
and all of the volunteers who have contributed code,
documentation, and support.

This work was also supported in part by CommerceNet,
LLC.

11.REFERENCES
[1] Agrawal, R., Rajagopalan, S., Srikant, R. and Xu, Y. Mining

Newsgroups Using Networks Arising From Social Behav-
ior in Proc. of the 12th Int'l World Wide Web Conference,
2003.

[2] Aktas, M. S., Nacar, M. A. and Menczer, F. Personalizing
PageRank Based on Domain Profiles, in Workshop on
Web Mining and Web Usage Analysis, (Seattle, WA, Aug
2004).

[3] Apple Developer Connection. Search Kit Reference.
2004.

[4] Arasu, A., Cho, J., Garcia-Molina, H., Paepcke, A. and
Raghavan, S. Searching the Web in ACM TOIT, 2001.

[5] Battelle, J. Watch Out, Google: Nutch could rewrite the
rules of search development in Business 2.0, 8 August,
2003.

[6] Battelle, J. The Search: Business and Culture in the Age of
Google, Penguin: to appear (2005).

[7] Bell, T. C., Moffat, A., Witten, I. H. and Zobel, J. The MG
Retrieval System: Compressing for Space and Speed in
Communications of the ACM, 1995, 38 (4). pp. 41-42.

[8] Benedict, L. Comparison of Nutch and Google Search
Engine Implementations on the Oregon State University
Website. Oregon State University, June 2004.

[9] Brin, S. and Page, L. Anatomy of a Large-Scale Hypertex-
tual Web Search Engine, in Proc. of the 7th Int'l Confer-

ence on World Wide Web, (Brisbane, Australia, 1998), pp.
107-117.

[10] Cafarella, M. CSE454 Lecture Notes: Inside Nutch. Univer-
sity of Washington, February 3 2004.24

[11] Cafarella, M. Nutch Distributed File System. August 2004.

[12] Cafarella, M. and Cutting, D. Building Nutch: Open
Source Search in ACM Queue, 2004, 2 (2).

[13] Cutting, D. Lucene. 2001.
http://jakarta.apache.org/lucene/

[14] Cutting, D. R. and Pedersen, J. O. Space Optimizations for
Total Ranking in Conference Proceedings of RIAO '97,
1997.

[15] Dean, J. and Ghemawat, S. MapReduce: Simplified Data
Processing on Large Clusters in OSDI'04: 6th Symp, 2004.

[16] Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R. V., Jhin-
gran, A., Kanungo, T., Rajagopalan, S., Tomkins, A., Tom-
lin, J. and Zien, J. SemTag and Seeker: Bootstrapping the
Semantic Web via Automated Semantic Annotation in
Proc. of the 12th Int'l World Wide Web Conference, 2003.

[17] Dumais, S., Cutrell, E., Cadiz, J. J., Jancke, G., Sarin, R. and
Robbins, D. C. Stuff I've Seen: A System for Personal In-
formation Retrieval and Re-use in Proc. of SIGIR 2003.

[18] Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu,
A.-M., Shaked, T., Soderland, S., Weld, D. S. and Yates, A.
Web-Scale Information Extraction in KnowItAll in Proc. of
the 13th Int'l World Wide Web Conf., 2004. pp. 100-110.

[19] Eubank, H., Swisher, J., Burns, C., Seal, J. and Emerson, B.
Design Recommendations for High-Performance Data
Centers, in Low-Power Data Center Design Charette, (San
Jose, CA, 2-5 Feb 2003), Rocky Mountain Institute, p.
100.

[20] Ford, P. WWW'04 Semantic Web Roundup. XML.com,
2004.

[21] Ghemawat, S., Gobioff, H. and Leung, S.-T. The Google
File System in Proc. of the 19th ACM Symp. OS Principles,
2003.

[22] Gincel, R. Focusing Enterprise Search in Infoworld, Octo-
ber 18, 2004. (42), pp. 36-42.

[23] Haye, M. Cross-instance Search System: Search Engine
Comparison. Report for the California Digital Library by
Snyder-Haye Inc, January 2004. 8pp.

[24] Henzinger, M. R., Motwani, R. and Silverstein, C. Chal-
lenges in Web Search Engines, in Proc. of the 18th Int'l
Joint Conf. on Artificial Intelligence, (2003), pp. 1573-
1579.

[25] Joachims, T. Optimizing Search Engines Using Click-
through Data in ACM Knowledge Discovery and Data
Mining, 2002.

[26] Kamvar, S. D., Haveliwala, T. H., Manning, C. D. and Go-
lub, G. H. Extrapolation Methods for Accelerating PageR-
ank Computations in 12th Int'l WWW Conf., 2003.

CN-TR 04-04: Nutch: A Flexible and Scalable Open-Source Web Search Engine 14

24 http://www.cs.washington.edu/education/courses/454/04wi/slides/nutch.ppt

[27] Kirsch, S. A Conversation with Matt Wells in ACM Queue,
April, 2004. vol. 2 (2), pp. 18-24.

[28] Kleinberg, J. M. Hubs, Authorities, and Communities in
ACM Computing Surveys (CSUR), 1999, 31 (4).

[29] Langville, A. N. and Meyer, C. D. A Survey of Eigenvector
Methods of Web Information Retrieval in SIAM Review,
2003

[30] Lasica, J. D. Balancing Act: How News Portals Serve Up
Political Stories in Online Journalism Review, 2004.

[31] Li, J., Loo, B. T., Hellerstein, J. M., Kaashoek, M. F., Karger,
D. R. and Morris, R. On the Feasibility of Peer-to-Peer Web
Indexing and Search, in Proc. of IPTPS'04, 2004.

[32] Lindsat, K. Secure Locate. 2002.
http://www.geekreview.org/slocate

[33] Manber, U., Smith, M. and Gopal, B. WebGlimpse: Com-
bining Browsing and Searching in Usenix TC, 1997.

[34] Manber, U. and Wu, S. Glimpse: A Tool to Search Through
Entire Filesystems in Usenix Technical Conf.,
1994.pp23-32.

[35] Miller, R. C. and Bharat, K. SPHINX: A Framework for Cre-
ating Personal, Site-Specific Web Crawlers, in Proc. of the
7th Int'l WWW Conf, (Brisbane, Australia, April 1998).

[36] Morgan, E. L. ht://Dig Search. May 2001.
http://www.infomotions.com/musing/opensource-ind
exers/htdig/

[37] mozDex. mozDex Open Source Engine. 2004.

[38] Namazu. Namazu User's Manual. 2004.
http://namazu.org/doc/manual.html

[39] National Science Digital Library. New Search Engine at
NSDL.org in NSDL Whiteboard Report, July, 2003. (32).
http://content.nsdl.org/wbr/Issue.php?issue=32

[40] Nutch Organization. Nutch API. 2004.
http://www.nutch.org/docs/api/index.html

[41] Overture. Public Nutch Index Demo, 2003.
http://research.yahoo.com/demo/nutch/

[42] Page, L., Brin, S., Motwani, R. and Winograd, T. The Pag-
eRank Citation Ranking: Bringing Order to the Web. Stan-
ford University, Palo Alto, November 1999.

[43] Patterson, A. Why Writing Your Own Search Engine Is
Hard in ACM Queue, 2004, 2 (2).

[44] Pinkerton, B. Finding What People Want: Experiences
with the WebCrawler in Proc. of the 2nd Int'l WWW Conf.,
1994.

[45] Pogue, D. Google Takes on Your Desktop. New York
Times, New York, October 21 2004.

[46] Rabinowitz, J. Indexing and Retrieving Data with Perl
and SWISH-E in Proc. of the Usenix Technical Conference,
2004.

[47] Radev, D., Allison, T., Craig, M., Dimitrov, S., Kareem, O.,
Topper, M. and Winkel, A. A Scaleable Multi-Document
Centroid-Based Summarizer in HLT-NAACL Demos, 2004.

[48] Rose, D. and Stevens, C. V-Twin: A Lightweight Engine for
Interactive Use in 5th Text Retrieval Conf., 1997. pp. 279-
90

[49] Shi, S., Yang, G., Wang, D., Yu, J., Qu, S. and Chen, M. Mak-
ing Peer-to-Peer Keyword Searching Feasible Using Multi-
level Partitioning, in Proc. of IPTPS'04.

[50] Szwarc, R. Zoë. 2003. http://zoe.nu/

[51] Thau, R. S. Design Considerations for the Apache Server
API, in Proceedings of the Fifth International Conference
on World Wide Web, (Paris, France, 1996).

[52] Thompson, K. Reflections on Trusting Trust in Communi-
cations of the ACM, 1984, 27 (8). pp. 761-763.

CN-TR 04-04: Nutch: A Flexible and Scalable Open-Source Web Search Engine 15

