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Abstract—Users routinely disclose personal information to
obtain the benefits of Personalized Online Services. As a result,
personal data is distributed across uncounted and unaccount-
able remote databases. Data mismanagement, as well as privacy
and security flaws undermine individuals’ control and privacy
of their personal data. Yet revealing detailed private data does
not necessarily yield useful service personalization; often this
functionality is only modestly dependent upon the accuracy of
user-supplied input. We demonstrate knowledge-based input
generalization wherein systematically perturbed user data is
supplied to a personalized service to gain forward privacy for
the user, while retaining the utility of the service’s results.

Keywords-Privacy, De-identification, Anonymity, Personal-
ization, HIPAA, Data-mining

I. INTRODUCTION

If someone asks you a question they’ve got no business
asking, you’re under no obligation to tell them the truth.

— Leonard Schiffman

Every day millions of users access Personalized Online
Services (POSs) to make travel arrangements, check invest-
ments, compare products, arrange medical treatment, and
so on. These services require the disclosure of personal
information in order to obtain personalized results.

When users access a POS, their data is usually stored
by the service provider, and these organizations may make
secondary use of this data, or share it with other parties.
Users concerned with data privacy have a natural instinct to
conceal or misrepresent personal information when using
websites that demand it [1]. However, it is a common
misconception that removing direct identifiers—personally
identifiable information, such as names and social security
numbers—is enough to safeguard individuals’ anonymity
and privacy. Users may trust a POS to ethically (and compe-
tently) handle their personal information by de-identifying
records before making secondary use of personal data.
Nonetheless, sensitive information can often be inferred
through various statistical methods based solely on quasi-
identifiers (such as date of birth), seemingly “non-sensitive”
and “non-identifying” information [2][3][4]. Our work ex-
plores the consequences of systematically misrepresenting

these quasi-identifiers, even given it is then likely that the
service’s results may be less accurate.

II. PRIOR WORK

Much of the academic literature on preserving data pri-
vacy1 focuses on the statistical database problem [7]: given
a database provider collects and aggregates data regarding
subject individuals, how may the contents of the database
be revealed to third parties while preserving the subject’s
privacy interests? This literature is concerned with both
measuring privacy when data is released to third parties and
methods to preserve it. Papers often treat both measures and
methods together but it is useful to consider them separately.

A. Measuring privacy in databases

Given a particular subject’s attribute record (microdata in
the literature) is already part of a larger database, several
privacy measures have been defined:
• k-anonymity guarantees that a record will not be

distinguishable from k − 1 records in the database
which share the same sensitive attributes. However, this
method is weak when all records share sensitive values;
although individuals cannot be linked to particular
records, they are known to be members of a group
sharing some sensitive attribute.

• l-diversity extends k-anonymity by also requiring at
least l “well-represented” values for the sensitive at-
tribute to introduce inter-group diversity [8].

• t-closeness addresses l-diversity’s weakness in skewed
distributions by additionally requiring that the distance
between the distribution of a sensitive attribute in an
equivalence class and the distribution of the attribute
in the entire dataset is not greater than t [9].

• Differential privacy defines a criteria for minimizing
the risk of joining a statistical database; the addition or
removal of the subject’s attributes should not substan-
tially change the outcome of data analysis [10].

A significant limitation to all of these measures is account-
ing for the likelihood that an attacker could have information

1For an overview of privacy in personalized services see [5][6].



other than that contained in the database itself. Bounding this
background knowledge problem is considered in [11].

B. Methods for sanitizing databases

Database privacy-preserving methods, which operate after
individuals’ private information has been collected, have
been proposed to prevent the re-identification of individ-
uals in anonymized datasets, and/or their association with
sensitive information. These sanitization methods include:
• Value suppression and generalization replaces a value

with a less specific but semantically consistent one [4].
• Randomization adds noise to records in an attempt to

constrain an attacker to deriving only aggregate data
distributions [12].

• Data swapping exchanges sensitive values between
records to mask their true values [13]

Database sanitization affects the utility of the database
for those parties who use it for future queries [14] [15]. We
consider the related (but not equivalent) problem of POS
output accuracy after input generalization in section IV-D.

C. Data privacy without databases: ex-ante methods

Of particular relevance to this paper is work to preserving
privacy before the subject discloses their attributes. Terms
such as perturbation and obfuscation have been used to
describe transforming input data to reduce the exposure
of sensitive data through input quality degradation, namely
reducing the level of detail of the provided information.
Examples of this research can be found in the contexts of
geo-location [16][17][18], private web search [19][20][21],
recommendation systems [22][23], and social networks [24].
This literature can be contrasted with that related to noise
injection and pollution techniques, less relevant here, such
as when decoy traffic is created by confusing user queries
with false ones [25] or with other users’ queries [26].

In our work, we prefer the term “generalization” as used in
the database privacy literature because our goal is not merely
to confuse a potential attacker, but also to preserve the utility
of the personalized service. We say input generalization to
make clear that generalization is performed ex-ante, that is,
before the sensitive data are supplied to the service.

III. Ex-ante INPUT GENERALIZATION

Our work is concerned with forward privacy, that is, with
minimizing the risk of future re-identification and exploita-
tion of potentially sensitive data based upon information
shared today but which may (today) be considered neither
sensitive nor identifying. The notion of forward privacy is
inspired by forward secrecy [27], a desirable cryptographic
property which prevents the use of compromised keys to
decrypt messages encrypted before the compromise.

Toward this end we introduce input generalization,
wherein a less precise version of users’ private information
is provided ex-ante to a POS, that is, before individuals have

disclosed or released (e.g., from medical records) their pri-
vate information. Input generalization allows an individual
to “blend in” to the crowd of current and future POS users
to minimize the risk of future re-identification and misuse of
personal data. Reduced precision relative to a service’s input
requirements is accomplished by systematically adding noise
to a subset of the data disclosed by the user to the service.

Input generalization differs from the methods discussed in
section II-B. Those methods are applied ex-post, whereas in
our work the transformation is applied ex-ante at the point
of initial disclosure. Because input generalization operates
ex-ante, users need not reveal their true data. Input gener-
alization thus goes beyond the scope of existing databases
by accounting for the universe of individuals who share the
relevant attributes for a problem domain. For example, in
a service for cancer patients, the universe might include
all current and future cancer patients. The goal of for-
ward privacy is precisely to transcend specific services and
databases, and to mitigate background knowledge attacks
which some of the methods described earlier fail to address.

Input generalization is a perturbation method in the man-
ner discussed in section II-C, where users define the desired
level of privacy [19] through inaccuracy and imprecision
[20]. However, compared to other ex-ante approaches, it
considers general attribute sets (rather than a single attribute
of a particular type), attributes that are explicitly requested
by the service provider, and by design trades-off result
accuracy for privacy.

A common, simple ex-ante method to assure forward
privacy is to refuse to provide sensitive data in the first
place. Alternatively, one can provide data to parties judged
sufficiently trustworthy, and accept the seemingly inevitable
failures.2 Neither approach recognizes the tension between
privacy and personalized service output quality and so does
not attempt to reconcile them, whereas input generalization
is focused precisely on this tension. An analytic treatment
of the privacy/utility tradeoff is in [21].

Rather than simply excluding or allowing disclosure of
sensitive information, POS users should be empowered
to disclose information as they see fit, for purposes they
judge useful, and with the discretion to provide only the
information necessary to obtain the desired service, possibly
adjusting as needed to gain quality at the cost of disclosure.

A. Trading-off Utility for Privacy

Generally, POSs are oblivious and insensitive to nuanced
privacy concerns, offering only Hobson’s choice: answer all
questions or do without service. Some answers are collected
in order to personalize the service as offered. However
inputs are also collected or precision is demanded for the
provider’s purposes such as advertising, statistical analysis,
implementation convenience, or outright resale.

2This is the “you have zero privacy anyway” viewpoint.



Our central hypothesis is that it is often unnecessary to
disclose sensitive information to obtain satisfactory output
results from a POS, and that input generalization can provide
forward privacy in such cases. That is, depending on the
context and the nature of the disclosed data, as well as the
subjective value attributed to the service, the gain in privacy
through undisclosed or partially disclosed information can
outweigh potentially reduced service utility (i.e., accuracy).
In section IV below we offer a model for input generalization
and its analysis. In the section V that follows, we provide
several case studies that support this hypothesis.

IV. DETAILS OF INPUT GENERALIZATION

A. Model

There are multiple principals (persons, agents, companies,
etc.) who have some interest in the operation of a given POS.
We can distinguish the user—i.e., the “subject principal”—
from potentially many “secondary principals”, including the
operators of the POS, and other entities who might access
the service or its data for whatever reason. The user supplies
his or her personal data ex-ante (that is, at input time)
in the form of attributes to the POS for the purpose of
personalizing the service. The service maintains a set of
ex-post (that is, taking place any time after the user’s input)
functions relevant to the various principals. We refer to the
main function as the one that services the user’s request. This
function is presumably personalized with respect to some
of the user’s inputs. Other auxiliary ex-post functions may
satisfy the needs of the non-subject principals; for example,
demographic information may be provided to advertisers.

In input generalization a less precise version of users’
private attributes is provided as input to the POS by adding
noise to the actual attribute values as desired.3 Our method
deals with quasi-identifiers rather than direct identifiers such
as name, address, or social security number. Quasi-identifiers
are items of personal information, such as residential zip
code and date of birth, which by themselves cannot be used
to identify an individual, but may, in combination with other
information, be used to infer individual identity.4

The foundational assumption of the present model is
that anyone aside from the user (i.e., the subject principal)
should be viewed as a potential attacker, including the (non-
subject) principals who operate the service itself. That is,
it is the very fact that the user has supplied personal data
to the service ex-ante that leads to threats to privacy.5 We

3This approach depends upon users’ willingness to provide perturbed
values for certain form fields [28].

4Users should share their direct identifiers appropriately—relying on law,
technology, boycott, or prevarication as needed. We do not consider privacy
of direct identifiers to be a solved problem in practice, but for the purposes
of this work we assume that other mechanisms are employed to protect
them.

5These attributes may be explicitly supplied by the subject user (e.g.,
date-of-birth), or they may be implicitly obtained (e.g., browser version),
in which case the generalization would need to be performed in software.

therefore expressly advocate that the user supply perturbed
(“generalized”) data to the service.6

B. Measuring Acceptable Accuracy Degradation

In input generalization a less precise version of users’
private attributes is provided by adding noise to the actual
attribute values, for example, substituting selected attributes
with either a broader containing class (e.g., a neighborhood
is substituted by its containing city), a similar item in the
same class (e.g., zip code 92617 is substituted with the
nearby 92606), or a less precise item (e.g., the date of birth
March 10th, 2000 is substituted with a less specific version
such as March, 2000).

Of course, input generalization is likely to change the
results returned by the service. Therefore, determining the
extent to which this perturbation acceptably degrades the
service’s output accuracy is of central concern. For example,
often a modest perturbation in a user’s date of birth may not
affect the outcome of the service, but privacy may improve
significantly. Input generalization needs to be knowledge-
based, meaning the degree and type of input perturbation
is based on domain knowledge and on the sensitivity of a
particular online service to its inputs.

As input generalization allows an individual to “blend in”
to the population representative of the universe of potential
users, generalization needs to account for uniform and non-
uniform data distributions. For example, most populations
are roughly uniform with respect to birthday, but not so
with respect to zip code where there is a greater probability
that a person lives in a higher populated zip code than in a
scarcely-populated one.

The goal of blending suggests weighted randomization,
where attribute values have different weights corresponding
to the probability of being chosen as a substitute for the real
values. For example, weighting would take account of the
population distribution among substitute zip codes.

We note that there are limits to the privacy gained by
adding noise: with enough data an attacker may achieve his
goals despite the added noise [29].

C. Quantifying input perturbation

We use the term generalization distance for the degree
of perturbation introduced by input generalization. For at-
tributes in metric spaces, generalization distance may be
straightforwardly calculated as Euclidean distance. Attribute
domains which are not naturally modeled as metric spaces

6To the extent that input generalization violates the assumptions of input
validity made by the non-subject principals, the method is likely to have
downstream implications for those non-subject principals’ estimates of the
validity of the service’s database, and therefore may reduce the utility of
user-provided information for these secondary purposes. Of course, this is
usually of little concern to the user, so long as the main function returns
personalized results that he or she finds useful. Our approach prioritizes
the users’ right to protect their own information as opposed to blindly
trusting service providers; it is ultimately the user’s choice whether or not
to disclose information truthfully.



might still accommodate a distance metric. For example,
Joslyn et al. model a gene ontology as a tree or graph where
distance between nodes can be measured [30].

Generalization distance is a measure of induced input
error (noise) which, from the POS’ perspective is a loss
of functionality affecting at least output accuracy; this is
quantified in section IV-D. From the subject’s perspective,
this is a potential gain of privacy; the quantification of that
gain is the topic of section IV-E.

D. Quantifying output accuracy

As a tradeoff for increased privacy, input generalization
may reduce the accuracy of a service’s output. Accuracy
refers to how close a value is to the correct one. Generally
the accuracy of the output will be inversely proportional
to the generalization distance of the input. As is the case
with input accuracy, output accuracy may be measured in a
number of ways.

1) Accuracy in metric spaces: For services providing
results that can be interpreted as a vector in a metric space,
the accuracy may be given as a normalized distance between
the original and generalized output.

2) Accuracy for unordered result sets: Consider an output
result to be a set of objects R = {r1, r2, ..., rn} with no
significance assigned to the order of elements. Let T be the
set of elements corresponding to the true output, and G the
set corresponding to the generalized output. We refer to false
negative results as Fn = T \G (elements in T but not in G)
and false positive results as Fp = G \T (elements in G but
not in T ). We note that:

|T ∩G| = |T | − |Fn| = |G| − |Fp|

and:
|T ∪G| = |T |+ |Fp| = |G|+ |Fn|

Given this, we can quantify accuracy using the Tversky
(similarity) index s [31]. Setting Tversky’s parameters α =
β = 1 is the most general approach, weighting false positives
and false negatives equally. For T ∪G 6= ∅:

s =
|T ∩G|

|T ∩G|+ α |Fp|+ β |Fn|
=
|T ∩G|
|T ∪G|

(1)

In the best case, the sets are equivalent (T = G) and s = 1,
including the special case where both sets are empty. In
the worst case, where s = 0, the (non-empty) sets have no
elements in common (T ∩G = ∅,where T ∪G 6= ∅).

3) Accuracy for ordered result sets: If the order of result
set is significant—a model that may be more appropriate
for evaluating the results from services such as search
engines and recommendation systems—an order-sensitive
non-conjoint intersection measure is required. We apply a
function composition technique accounting for order based
on [32]. In this case we call the first n elements of the
set Rn, and define sn to be Tversky’s s (as given above)

operating on the first n-element prefix of R, and define
k = max(|T |, |G|). Our weighted order-sensitive overlap
measure σ is then the average overlap of all the prefixes:

σ =
1

k

k∑
n=1

sn

As with s, σ ranges between 0 (complete disagreement)
and 1 (perfect match). This calculation has the property of
exponentially weighting early elements over late elements.

E. The blending factor: quantifying gain in privacy

Input generalization creates the perturbed attributes A′ by
replacing each selected attribute name-value pair 〈a, v〉 in A
with a corresponding 〈a, v′〉 given v′ ∼= v.

The privacy gain achieved by input generalization, which
we call the blending factor (β), is the ratio of the portion of
the population U matching the attributes after generalization
A′ versus the original attributes A. β expressed in the context
of of k-anonymity would be the ratio k′/k between k before
and k′ after generalization and suppression.

The treatment of the blending factor that follows is in the
spirit of Sánchez et.al.’s [20] Profile Exposure Level (PEL)
but, firstly we measure improvement in privacy rather than
remaining exposure, and secondly we segregate the difficult-
to-obtain joint distribution data into a separate error term.

Define X as the elements of A that are not to be
generalized (hence unchanged in A′), G as elements from
A which are to be generalized, and G′ as the attribute set
corresponding to G as generalized in A′:

X = A ∩A′ G = A \X G′ = A′ \X

We can represent the proportion of the population U that is
selected by a set of attributes:

Pr (∩a′ : a′ ∈ A′)
Pr (∩a : a ∈ A)

=
Pr (A′)

Pr (A)
=

Pr (G′ ∩X)

Pr (G ∩X)
= β

Since A′ is a more general selector of elements in U than
A is, β ≥ 1.

We can then express β as a ratio of conditional probabil-
ities given the ungeneralized attributes X:

β =
Pr (G′|X) Pr (X)

Pr (G|X) Pr (X)
=

Pr (G′|X)

Pr (G|X)
(2)

If G (the attributes to be generalized) is statistically
independent of X (the non-generalized attributes), then:

β =
Pr (G′)

Pr (G)
(3)

Further, if the generalized attributes themselves are statis-
tically independent of one another (such as birth date and
gender), then by the multiplication rule:

β =

∏
g′∈G′

Pr (g′)∏
g∈G

Pr (g)
(4)



Statistical dependence between attributes does not neces-
sarily affect β’s value. Returning to the conditional proba-
bility formulation in equation 2, we can use Bayes’ Rule so
that β is conditional upon G:

β =
Pr (G′|X)

Pr (G|X)
=

Pr (X|G′) Pr (G′)
Pr (X) /

Pr (X|G) Pr (G)
Pr (X)

which we can rearrange as (contrast with equation 3):

β =
Pr (X|G′)
Pr (X|G)

· Pr (G
′)

Pr (G)

Often the first term can be estimated as being close to 1,
bypassing the difficulty of determining joint distributions.
For example, consider the proportion of the people born
between Nov 1 and Nov 10 who like the TV series House,
versus the proportion of people born on exactly Nov 5
who like House. This estimation requires only the judgment
of relative statistical independence when generalizing an
attribute, rather than independence itself or the distribution
of the attribute in the population. In other words, what
matters is not the degree of attribute dependency, but that
they are equally dependent before and after generalization.

The blending factor resulting from a seemingly modest
input generalization can be significant: Two orders of magni-
tude result merely from generalizing a required date-of-birth
input to a 100-day range. But very large blending factors
may be required to reduce the risk of re-identification in the
face of 1) redundant over-identification among attributes, 2)
background information, and 3) non-perturbed attributes.7

F. Estimating confidence in the accuracy of the output

Because input generalization may affect a service’s output,
it is useful to have a confidence estimate of the (un)certainty
of the service’s output accuracy with respect to the perturbed
inputs. This estimate will be a function of both the salience
and the amplitude of the perturbed attribute. Salience de-
notes the relevance of a given attribute on the service’s
functionality. Not all attributes are likely to have the same
salience. For example, we can assert with high probability
that a user’s zip code has little effect on a service that
provides movie recommendations, but that it will have a
substantial impact on a service that recommends restaurants.
Amplitude refers to the magnitude of the perturbation.
Inducing a small perturbation (say, of meters) in the user’s
location will not substantially change the list of recom-
mended restaurants, but a more significant perturbation (say,
of miles) may significantly degrade such recommendations
[33]. Given these knowledge-based judgments, a model of
the specific type of service in a domain should be used
to estimate the confidence in the generalization output.
These models should be constructed based on an analysis of

7Our intuition is that the notion of over-identification justifies creating
variants of record counting -based privacy metrics (such as k-anonymity)
to allow for fractional values between 0 and 1.

which attributes inarguably have an impact on the service’s
outcome (and to what degree), versus those that do not.

Since confidence scores are domain and service specific,
these can also be determined by performing sensitivity
analyses for the different input attributes. Specifically, per-
turbations can be performed repeatedly for each attribute
(perhaps using different perturbation magnitudes in the
case of metric attributes, such as distance) to quantify by
observation the impact on the output. Based upon these
measurements, probabilities of change in the output can
be derived. Assuming attribute independence, a combined
probability or overall confidence score can then be provided
based on attribute-specific sensitivity analyses.

For those attributes whose difference cannot be measured,
but which maintain a hierarchical or containment relation-
ship, the magnitude of the error induced must be estimated
based on domain-specific scales.

V. CASE STUDIES: CLINICAL TRIAL MATCHING

Although input generalization can be applied in almost
any domain, we have chosen to demonstrate and analyze
it through case studies in the healthcare domain. User-
disclosed data in healthcare is critical and sensitive. Fur-
thermore online healthcare POSs often request a wide range
of personal data.

Clinical trial matching services (CMTSs) are particularly
interesting examples of POSs. These services match a patient
to clinical trials based on the patient’s medical informa-
tion. Inclusion and exclusion criteria describe the necessary
qualifications to participate in a trial. Inclusion criteria are
those attributes that qualify a patient to participate in a trial
(e.g., patient must have stage III lung cancer). Exclusion
criteria are those attributes that disqualify the patient (e.g.,
the patient must not have previously had a platinum-based
chemotherapy drug). This space is large and complex; ac-
cording to ClinicalTrials.gov [34] there are presently about
130,000 ongoing clinical trials, 35,000 of which are specific
to cancer. A typical trial, for example, studies the effective-
ness of the combination of the experimental drug MK2206
and the approved drug Paclitaxel on patients with advanced
or metastatic breast cancer; the trial excludes patients who
have already been treated with Paclitaxel.

We studied two real CTMSs for cancer patients: Emerg-
ingMed [35] and BreastCancerTrials [36]. We observed the
extent to which perturbing the user’s input affects the results.
Both services are well known and widely used. The former
includes searching trials for different types of cancer, while
the later is specific to breast cancer. Both require the patient
to enter a large amount of personal data such as zip code,
birth date, cancer type and stage, and current and past
treatments.

For the case study, we used a sample patient database of
fourteen fictitious patients with plausible melanoma, breast,
colorectal, and lung cancer profiles created by a clinical



researcher expert in clinical trials for cancer patients. We
consider our sample size sufficient to investigate our input
generalization approach due to our knowledge of the salient
attributes in CTMSs, acquired through discussion with ex-
perts in the field. As an example of relevant nuance in this
area, consider that a patient’s date of birth by itself is usually
not relevant, but it places the patient within an age cohort to
determine whether pediatric, adult, or geriatric trials should
be provided. Similarly, the patient’s zip code is typically
relevant only in that it helps determine if the patient could
commute to the trial location.

Input generalization methods

CTMSs typically collect five to ten quasi-identifying
attributes in the course of supplying service. We chose to
generalize three: zip code, birth date, and prescription drugs.

Zip Code: The patients’ zip code is replaced by a random
one within a fixed radius of the original. We normalized the
selected areas from which we drew these random zip codes
to obtain approximately the same number (approx. 80).

Date of birth: The patient’s date of birth is replaced by
a random month and year within a range of ± 5 years.

Prescription drugs: Prescription drugs are hierarchically
arranged, where drug brands are grouped within generic
drugs, and the latter are grouped by therapeutic drug classes.
We replace prescribed drugs—given a brand or a generic
drug as input—by alternative ones within the same thera-
peutic class. For example, if the patient was treated with
Eloxatin, it might be replaced by another drug in the
“alkylating agents” class, such as Platinol. The rationale
for this generalization is knowledge-based—clinical trials
are usually more concerned with a patient having been
previously treated with a member of a drug class, rather
than with a specific drug.

Test 1: Same service, different diagnosis

In this first test, our goal is to assess the accuracy of
the output when the input for patients’ zip code, date of

birth, and (in some cases) prescription drugs is generalized.
We use EmergingMed for this analysis, and applied input
generalization to example cases of melanoma, colorectal,
and lung cancer.

We measured the output accuracy s (formula 1 in section
IV-D2), which compares the results for both the real and
generalized inputs. We note that the order of results returned
from EmergingMed has no significance. We calculated the
blending factor (β, formula 4 in IV-E), assuming relative
statistical independence between attributes, given modest
perturbations. Our results (table I) show that this POS is
mostly insensitive to zip code and birth date substitutions
chosen as specified in section V. Patient 7 is the exception,
where the same clinical trial was provided but in an alter-
native location 35 miles away from the correct one.

In most cases, generalizing prescription drugs—the re-
placement of one drug by other in the same therapeutic
class—did not have a significant impact on the results. We
can observe, however, a degradation of the result for patients
4 and 9 where a larger number of salient attributes—in this
case drug names—have been perturbed. Note that not all
drugs have been generalized, but the real drug is maintained
when there is no viable alternative in the available options.

Test 2: Same service and diagnosis, different generalizations

The goal of this test (on EmergingMed) is to assess
whether approximately the same results are obtained when
different drug substitutions are made for the same true value.
For example, if the prescribed drug is Platinol (generic:
Cisplatin, an alkylating agent), it can be replaced by either
Neosar or Eloxatin—both alkylating agents as well. In this
test we generalized only prescribed drugs.

Our results (summarized in table II) show that the service
is mostly insensitive to the selection of a specific drug
within a given therapeutic class, the worst case being 90.4%
accuracy in the fourth generalization for patient 9.

Original values Generalized values
zip code dob prescriptions T zip code dob prescriptions G FP FN accuracy β

Patient 1 94025 Jan 1955 Vemurafenib, Dacarbazine 20 95056 Jun 1951 Vemurafenib, Carmustine 20 0 0 100% 1.7×105

Patient 2 10016 Jan 1965 Ipilimumab, Dacarbazine 3 11222 Aug 1960 Ipilimumab, Temozolomide 3 0 0 100% 1.7×105

m
el

an
o.

Patient 3 60601 Jan 1975 3 60202 Nov 1977 3 0 0 100% 9.6×103

Patient 4 94025 Jan 1955 Bevacizumab, Erlotinib,
Fluorouracil, Oxaliplatin 284 95129 Jul 1957 Bevacizumab, Gefitinib,

Fluoracil, Cisplatin 283 2 3 98.3% 8.6×105

Patient 5 10016 Jan 1955 Fluorouracil, Oxaliplatin 3 10024 Jan 1958 Capecitabine, Cisplatin 3 0 0 100% 1.4×106

co
lo

re
ct

al

Patient 6 60601 Jan 1975 3 60621 Feb 1972 3 0 0 100% 9.6×103

Patient 7 94025 Jan 1955 21 94544 May 1950 21 1 1 90.9% 9.6×103

Patient 8 10016 Jan 1965 Carboplatin, Oxaliplatin 3 10105 Oct 1967 Lomustine, Cyclophosphamide 3 0 0 100% 3.1×106

lu
ng

Patient 9 60601 Jan 1975 Cetuximab, Carboplatin,
Oxaliplatin 250 60706 Sep 1980 Gefitinib, Cisplatin,

Cyclophosphamide 248 2 4 97.6% 1.5×107

T is the true output cardinality, G the generalized output cardinality, FP the number of false positives, and FN the number of false negatives.

Table I
TEST 1



Original values Generalization 1 Generalization 2 Generalization 3 Generalization 4
prescriptions T prescriptions FP FN acc. prescriptions FP FN acc. prescriptions FP FN acc. prescriptions FP FN acc.

Patient 1
melanoma

Vemurafenib,
Dacarbazine 20 Vemurafenib,

Oxaliplatin 0 0 100% Vemurafenib,
Carboplatin 0 0 100% Vemurafenib,

Cisplatin 0 0 100% Vemurafenib,
Temozolomide 0 0 100%

Patient 4
colorectal

Bevacizumab,
Erlotinib,

Fluorouracil,
Oxaliplatin

257

Bevacizumab,
Erlotinib,

Fluorouracil,
Cisplatin

1 2 98.8%

Bevacizumab,
Cetuximab,

Fluorouracil,
Cisplatin

2 4 97.7%

Bevacizumab,
Cetuximab,

Fluorouracil,
Oxiplatin

1 2 98.8%

Bevacizumab,
Gefitinib,

Fluorouracil,
Oxiplatin

0 0 100%

Patient 9
lung

Cetuximab,
Carboplatin,
Oxaliplatin

219
Gefitinib,

Lomustine, Cy-
clophosphamide

0 11 95%
Erlotinib,

Lomustine,
Cisplatin

2 3 97.7%
Cetuximab,
Cisplatin,

Oxaliplatin
0 0 100%

Erlotinib,
Caboplatin,

Cisplatin
20 3 90.4%

Patient 12
breast

Trastuzumab,
Doxorubicin
Liposomal

18 Trastuzumab,
Epirubicin 0 0 100% Trastuzumab,

Mitoxantrone 0 0 100% Lapatinib,
Epirubicin 1 0 94.7% Lapatinib,

Mitoxantrone 1 0 94.7%

Table II
TEST 2

Original values Generalized values
pat. zip code dob prescriptions T zip code dob prescriptions G FP FN acc. β

10 94025 Jan 1955 16 94402 Mar 1956 16 0 0 100% 9.6×103

11 10016 Jan 1975 46 11101 Sep 1963 46 0 0 100% 9.6×103

12 60601 Jan 1975 Trastuzumab, Doxorubicin Liposomal 18 60153 Apr 1973 Lapatinib, Mitomycin 19 1 0 94.7% 6.7×105

13 80202 Nov
1945

Bevacizumab, Capecitabine,
Carboplatin, Letrozole, Raloxifene,

investigational
196 80045 Feb 1940 Bevacizumab, Cisplatin, Methotrexate,

Anastrozole, Toremifene, investigational 195 1 2 98.5% 3.9×107

E
m

er
gi

ng
M

ed

14 32034 Mar
1973

Trastuzumab, Zoledronic acid,
Cisplatin, Doxorubicin, Oxaliplatin,

Raloxifene, Tamoxifen, investigational
28 31520 Jul 1970

Lapatinib, Zoledronic acid, Carboplatin,
Cyclophosphamide, Epirubicin,

Goserelin, Toremifene, investigational
27 1 2 89.7% 1.4×

1010

10 940 1955 44 944 1956 44 0 0 100% 2.9×102

11 100 1975 43 111 1973 43 1 1 95.5% 2.5×102

12 606 1975 Trastuzumab, Doxorubicin Liposomal 68 601 1973 Lapatinib, Mitoxantrone 69 3 2 93% 1.2×104

13 802 1945 Bevacizumab, Capecitabine,
Carboplatin, Letrozole, Raloxifene 75 800 1940 Bevacizumab, Methotrexate, Cisplatin,

Anastrozole, Toremifene 79 8 4 85.5% 9.7×105

B
re

as
tC

an
ce

rT
ri

al
s

14 320 1973
Trastuzumab, Zoledronic acid,

Cisplatin, Doxorubicin, Raloxifene,
Tamoxifen

54 315 1970
Lapatinib, Pamidronate,

Cyclophosphamide, Epirubicin,
Raloxifene, Toremifene

52 3 5 86% 1.2×107

Table III
TEST 3

Original values Input generalization Random substitution
prescriptions T prescriptions G FP FN acc. prescriptions R FP FN acc.

Patient 1
(melanoma) Vemurafenib, Dacarbazine 20 Vemurafenib, Carmustine 20 0 0 100% Vemurafenib, Tamoxifen 20 0 0 100%

Patient 4
(colorectal)

Bevacizumab, Erlotinib,
Fluorouracil, Oxaliplatin 284 Bevacizumab, Gefitinib,

Fluoracil, Cisplatin 283 2 3 98.3% Bevacizumab, Irinotecan,
Fluorouracil, Raltitrexed 285 4 3 97.6%

Patient 9
(lung)

Cetuximab, Carboplatin,
Oxaliplatin 250 Gefitinib, Cisplatin,

Cyclophosphamide 248 2 4 97.6% Trastuzumab, Gemcitabine,
Vinorelbine 238 5 17 91.4%

E
m

er
gi

ng
M

ed

Patient 13
(breast)

Bevacizumab, Capecitabine,
Carboplatin, Letrozole,

Raloxifene, investigational
196

Bevacizumab, Cisplatin,
Methotrexate, Anastrozole,
Toremifene, investigational

195 0 1 99.5%
Bevacizumab, Erlotinib,

Zoledronic acid, Goserelin,
Anastrozole, investigational

193 3 6 95.5%

B
C

T.
or

g

Patient 14
(breast)

Trastuzumab, Zoledronic
acid, Cisplatin, Doxorubicin,

Raloxifene, Tamoxifen
54

Lapatinib, Pamidronate,
Cyclophosphamide, Epirubicin,

Raloxifene, Toremifine
52 3 5 86%

Ixabepilone, Methotrexate,
Topotecan, Anastrozole,
Raloxifene, Leuprolide

56 14 12 61.8%

R is the cardinality of the set of trials result of random substitutions.

Table IV
TEST 4



true value generalized clinical trial FN FP justification

Patient 7
(lung) 94025 94544

Carboplatin and Paclitaxel With or Without
Bevacizumab and/or Cetuximab in Treating Patients
With Stage IV or Recurrent Non-Small Cell Lung

Cancer (NCT00946712)

provided the same trial at a closer location
(Castro Valley instead of MountainView)

Patient 13
(breast) Nov 1945 Feb 1940

A Pharmacokinetic Study of Trabectedin in Patients
With Advanced Malignancies and Hepatic

Dysfunction (NCT01273493)

eligibility is 18 years to 70 years old, and
generalized patient is 72 years old.

Patient 4
(colorectal)

Bevacizumab, Erlotinib,
Fluorouracil, Oxaliplatin

Bevacizumab, Gefitinib,
Fluoracil, Cisplatin

GDC-0980 in Combination With a Fluoropyrimidine,
Oxaliplatin, and Bevacizumab in Patients With

Advanced Solid Tumors (NCT01332604)

excludes studies for patients which have
received Oxaliplatin-based therapy within

1 year of initiation of study treatment

Table V
EXAMPLES OF INCLUSION OR EXCLUSION CRITERIA

Test 3: Different services, same diagnosis

This test uses two clinical trial matching services (Emerg-
ingMed and BreastCancerTrials) to assess whether the ac-
curacy of our results is consistent across services, or if
the accuracy obtained through input generalization depends
on the specific service. Although the information requested
is slightly different, the attributes we are interested in
generalizing are consistent across the selected services.

For this test we generalized zip code, date of birth,
and prescription drugs for breast cancer patients. Note that
BreastCancerTrials requires only the first three digits of
the zip code, and only the year of one’s birth. (It is more
sensitive from the outset towards users’ privacy.)

Overall, the generalized output of BreastCancerTrials is
less accurate than that of EmergingMed (arithmetic mean of
96.6% vs. 92%). There are several plausible reasons for this
difference, including differences in the matching algorithms,
and the difference of detail in the input. A more definitive
explanation would require knowledge of the details of the
systems’ implementation and database contents.

As observed in table III, the results of our input gen-
eralization method are mostly favorable, with an accuracy
arithmetic mean of 94.3%. The worst case is for patient 13
in BreastCancerTrials with an overall accuracy of 85.5%,
but in this case six input values have been generalized.

Test 4: Generalization vs. random substitution

In this test we ask whether non-knowledge-based
generalization—in this case random substitution—
significantly reduces output accuracy, as expected. For
example, Decarbazine, a chemotherapy drug, is replaced by
Tamoxifen, a hormonal therapy. Our results are summarized
in table IV.

Surprisingly, the difference between the generalized out-
put and the one yielded by random substitution in the input
offered to EmergingMed is insignificant—the difference
between their accuracy arithmetic means is only 2.7%. On
the other hand, a significant difference is observed when
random substitutions are offered to BreastCancerTrials—a
difference of 24.2%. We can conclude that BreastCancerTri-
als is more sensitive to the input compared to EmergingMed,
corroborating the difference in accuracy observed in test 3.

Discussion

Based on our observations, age and zip code have rela-
tively small effect on the results in these CTMSs. Even when
a zip code is substituted with one hundreds of miles away,
the clinical trials are the same ones in most cases, although
an alternative location is sometimes offered. These services
are, however, more sensitive to drug generalization.

In tests 1 and 3 a significant blending factor is obtained
through input generalization, maintaining 100% accuracy in
many cases. For example, zip code, date of birth, and one
drug were generalized for melanoma patient 1 from the pool
of approximately 80 zip codes, a range of 10 years, and
a set of 18 alkylating agents. Assuming that population is
distributed uniformly across zip codes and there is an equal
probability of taking any drug in the alkylating agents class,
the blending factor β, i.e., privacy, increases by a factor of
120 (months) × 80 (zip codes) × 18 (alkylating agents)
= 172,800 (or ∼ 105). This is a notable result given that
no accuracy was sacrificed. Of course more attributes could
be perturbed, and by a greater degree, if there is higher
tolerance for output inaccuracy.

Even in the worst case, an accuracy of 85.5% was
obtained for patient 13 (using BreastCancerTrial.org), but
with a blending factor of (120 (months) × 80 (zip codes) ×
8 (antimetabolites) × 18 (alkylating agents) × 4 (aromatase
inhibitors) × 7 (hormones/antineoplastics)) / 40 (zip codes
starting with 802) = 967,680 (or ∼ 106). A more modest
blending factor would still yield a significant gain in privacy
with (potentially) increased result accuracy.

As expected, accuracy degrades with an increasing num-
ber of generalized (salient) attributes. There is an inverse re-
lation between salience, perturbation amplitude, and number
of generalized attributes and the services accuracy. Each per-
turbed attribute increases the probability of matching more
trials’ inclusion or exclusion criteria. Trials are excluded or
included in the output because only patients within a specific
age range, or who live within a given distance, or who have
(or have not) taken a specific drug are qualified. Table V
provides examples for each of these cases drawn from our
tests, along with the reason why they have been included or
excluded from the generalization output.



We are giving the same weight to false positives as to
false negatives in calculating accuracy (by setting Tversky’s
α and β to 1 in the s computation of section IV-D). However,
one might consider false negatives as more important in this
case, given that it may not matter to obtain a few additional
but irrelevant trials, whereas it may be critical not to miss
any possible trials. This is the tradeoff between privacy and
output accuracy that users need to make. Input generalization
tools could help users make these sort of decisions; our
metrics provide a means to parameterize such choices.

The foregoing case studies strengthen the claim that, at
least in this domain, users often unnecessarily sacrifice their
privacy by disclosing detailed personal, sensitive, informa-
tion for the benefits of expected personalization, but that,
at least in this domain, POSs are not sensitive to all the
requested personal information. Specifically, these services
are mostly insensitive to small changes in users’ age and
location, and only moderately sensitive to changes in drug
values. One service used in our study exhibited insensitivity
even to presumably relevant attributes such as cancer stage.

VI. CONCLUSIONS

Lt. Kaffee: I want the truth!
Col. Jessup: You can’t handle the truth!

— A Few Good Men (1992)

Input generalization promotes forward privacy by replac-
ing private data with less precise values, thus minimizing
the risk of future re-identification or unauthorized usage of
this data. Input generalization applies privacy measures ex-
ante in contrast to well known mechanisms concerned about

Figure 1. UI widget for drug generalization

privacy ex-post disclosure (e.g., differential privacy), and
therefore outside the data owners’ control. Generalization is
implemented through the knowledge-based substitution of
attribute values by a broader containing class, an equivalent
in the same class, or a less accurate or precise version.

We have demonstrated how one can quantify the improve-
ment in privacy and reduction in accuracy provided by input
generalization. The resulting degradation due to such gen-
eralization is contingent on the salience of the generalized
attribute(s) with respect to the service, the amplitude of their
perturbation, and the number of perturbed attributes. In our
case studies these factors affected the accuracy in matching
clinical trials’ inclusion or exclusion criteria. However, the
most notable result is that in many instances 100% accuracy
was maintained despite blending factors (i.e., privacy gains)
of five or six orders of magnitude.

Input generalization enables users to make the tradeoff
between personal data disclosure and service accuracy by
controlling the extent of disclosure. The method is appli-
cable to any personalized online service where the tradeoff
between privacy and accuracy depends upon the salience of
user-provided attributes.

In conjunction with the case study described here we
created a prototype Blend me in browser plug-in with inter-
action widgets for generalizing zip code, date-of-birth, and
prescription drugs (the drug widget is shown in figure 1).
For future work we envision a library of input generalization
interaction widgets that would help users maximize forward
privacy by permitting them to wisely choose a desired point
in the trade-off between privacy and service utility.
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