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Abstract | The emerging paradigm of Precision Oncology 3.0 uses panomics and sophisticated methods of 
statistical reverse engineering to hypothesize the putative networks that drive a given patient’s tumour, and 
to attack these drivers with combinations of targeted therapies. Here, we review a paradigm termed Rapid 
Learning Precision Oncology wherein every treatment event is considered as a probe that simultaneously 
treats the patient and provides an opportunity to validate and refine the models on which the treatment 
decisions are based. Implementation of Rapid Learning Precision Oncology requires overcoming a host of 
challenges that include developing analytical tools, capturing the information from each patient encounter 
and rapidly extrapolating it to other patients, coordinating many patient encounters to efficiently search for 
effective treatments, and overcoming economic, social and structural impediments, such as obtaining access 
to, and reimbursement for, investigational drugs.
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Introduction
Panomic analyses (such as genomic, transcriptomic, pro-
teomic, metabolomic, etc) demonstrate that, although 
cancer genomes may harbour thousands of aberra-
tions,1,2 the networks of molecular pathways that drive 
an individual patient’s tumour can be elucidated.3–6 The 
emerging paradigm of Precision Oncology seeks to 
determine tumour-driving networks that function in a 
particular patient’s tumour, and to then design a rational 
combination therapy—selected from the rapidly growing 
arsenal of targeted drugs—that will ameliorate the effect 
of the aberrations in that particular patient’s tumour. 
This approach has the advantage that narrowly targeted 
therapies may have fewer side effects, and may be more 
effective than broad cytotoxic therapies. However, eluci-
dating the driver networks and creating effective combi-
nation therapies is cutting-edge biomedical science, and 
it is critical to do this correctly, otherwise the tumour 
might escape the treatment altogether. Moreover, even 
if the correct targets are determined, there may be no 
available treatments for some targets.

In this Review, we briefly describe what we call 
Precision Oncology 3.0, and then focus on the challenge 
of efficiently searching for the optimal combination 
therapy recognizing that cancer constitutes thousands of  
functional subtypes that can be treated with hundreds 
of targeted drugs. We describe approaches to coordinate 
this search across all patient encounters (Box 1), and 
to capture what is learned from each such encounter 
and rapidly apply it to other patients. We also discuss 
approaches to overcome some of the economic, social 
and structural impediments faced by these efforts, 
such as obtaining access to, and reimbursement for, 
investigational drugs.

Precision Oncology 3.0
Borrowing from Web nomenclature, one can roughly 
distinguish three generations of Precision Oncology. 
Precision Oncology 1.0, the prevailing standard, involves 
testing for small numbers of molecular abnormalities that 
are correlated with drug response in particular tumour 
types (for example, companion diagnostics [Box 1] for 
EGFR inhibitors in lung cancer). Precision Oncology 1.0 
is almost always constrained by the tissue-of-origin, and 
other non-molecular characteristics such as microscopic 
histology. Precision Oncology 2.0 involves examining 
dozens or potentially hundreds of possible mutational 
hotspots simultaneously,7 or sequencing the exomes 
of several hundred cancer-associated genes,8 and this 
approach might sometimes disregard non-molecular 
characteristics. Whereas the tests and interpretations 
involved in Precision Oncology 1.0 are narrowly con-
strained and well defined, Precision Oncology 2.0 requires 
that laboratories have specialized equipment, perhaps 
including next-generation sequencing, and imposes a 
much greater interpretive load on the physician, who may 
be expected to develop a therapeutic regimen to match 
a wide range of possible molecular subtypes (Box 1). 
Because of these requirements, few patients have had the 
opportunity to take advantage of Precision Oncology 2.0, 
but with the broad availability of next-generation 
sequencing and molecular diagnostic service provid-
ers to aid in interpretation,9–11 it is rapidly becoming the 
standard of care at leading cancer centres worldwide.

Unfortunately, cancer biology is far too complex to be 
characterized by the mutational status of a few genes.12 
Most cancers seem to arise from collections of mutated 
and aberrantly regulated genes that collaborate to promote 
tumour growth.13 The picture is further muddied by feed-
back cycles, immune responses, and pharmacokinetics. 
Moreover, tumours can accumulate further mutations to 
escape a given treatment. These facts suggest that cancer 
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must be managed by treatment regimens comprising a 
cocktail of drugs that are changed to challenge the evolv-
ing disease. The emerging new generation of Precision 
Oncology, which we term Precision Oncology 3.0 
(Figure 1), uses broad-spectrum panomics and sophisti
cated network-based statistical reverse engineering 
(Box 1) methods to hypothesize the putative driver net-
works for a given patient’s tumour. Once these are com-
puted, they are combined with important contextual 
features (such as the patient’s treatment history, status, and  
preferences, as well as knowledge of available drugs  
and drug interactions) to hypothesize a treatment plan that 
attacks these tumour drivers with cocktails of narrowly 
targeted therapies.14–16

In Precision Oncology 3.0, as we define it, initial treat-
ment decisions, monitoring, and subsequent treatment 
choices are all based on sophisticated molecular analysis 
of the biochemical and signalling networks involved in 
the disease (Figure 2). For example, if an initial therapy 
designed to interrupt a signalling pathway fails to inhibit 
tumour growth, one would analyse whether the treatment 
reached its targets, and whether the pathway was blocked 
as intended. If the patient initially responds but develops 
resistance, subsequent analysis would be undertaken to 
reveal how the tumour has evolved at the molecular level 
to evade the drugs, suggesting new lines of therapy for 
that patient, and for other patients with similar tumours. 
Panomic comparison of the tumour before, and following, 
the development of resistance (possibly with additional 
intervening biopsies) could characterize the driver net-
works in detail. Serial monitoring of the patient’s tumour 
could also provide insight into how these networks work 
by revealing how they dynamically respond to perturba-
tions.17 By charting the trajectory of a tumour’s molecular 
profile over time, it might be possible to anticipate how 
a cancer is likely to evolve, and to take proactive steps to 
block it from doing so. One might also examine the con-
sequences of perturbing tumour networks by combin-
ing targeted drugs and cytotoxic therapies.18 In Precision 
Oncology 3.0, every treatment event is a probe, simulta-
neously treating the patient and providing an opportu-
nity to test and improve our molecular understanding of 

the disease.3,4,19 Whereas classical clinical trials provide 
strong evidence for the efficacy and/or effectiveness (or 
lack thereof) of a small set of treatments in a large set of 
patients, Precision Oncology 3.0 works in the opposite way, 
evaluating a wide range of possible treatments in a small 
cohort of patients, and then aggregating the results over all 
such experiments to achieve strong evidence. Moreover, 
by capturing what is learned about each pathway and each 
drug at each such encounter, the resulting knowledge 
can be generalized to other drugs or drug combinations, 
patients, and cancers, enabling learning to proceed rapidly, 
one patient at a time instead of one trial at a time.

The concept of molecular reverse engineering of 
driver networks is widely sought after, even if the techno
logy required to do so has only recently become widely 
available. As early as 2002, computational biologists 
were engaged in reverse engineering the networks that 
are active in particular cells by analysing expression 
data,20–22 and in the subsequent decade this technology 
has blossomed to the point where it is practical on a large 
scale.3,4,23–25 Examples of drivers of cancers that have been 
analysed in this way include the reverse engineering of 
the nuclear receptor TLX oncogenic transcriptional 
network to identify the transcription factor RUNX1 as 
a tumour suppressor in T‑cell acute lymphoblastic leu-
kaemia (T-ALL),26 and the determination of a transcrip-
tional module that activates expression of mesenchymal 
genes in malignant glioma, including the transcrip-
tion factors C/EBPβ and STAT3 as master regulators of 
mesenchymal transformation.14

Evidence for the ability of Precision Oncology 3.0 to 
learn from single patients comes from the analysis of 
exceptional responders (Box 1) in large-scale clinical trials. 
Two examples were recently reported. The first example 
involved a rare responder to everolimus (in a trial for 
advanced bladder cancer) whose tumour harboured an 
unexpected TSC1 mutation that was subsequently identi-
fied in several of the partial responders in the same study.27 
The second example involves a complete responder in a 
negative phase I safety trial that tested a chemotherapy 
drug combined with an experimental drug that interfered 
with DNA repair. The patient harboured a mutation in 
RAD50, a gene that codes for proteins involved in a DNA 
repair complex, which is found to be mutated in 4% of 
all patients with cancer, suggesting that they too might 
benefit from this ‘failed’ drug combination.28 

Investigators at some major cancer centres are beginning 
to apply Precision Oncology 3.0 in a clinical setting, along 
with a few commercial vendors. In addition to the exam-
ples mentioned above,3,4,6,7 medical institutions pursuing 
Precision Oncology 3.0 include (but are not limited to) 
the Duke Centre for Personalized and Precision Medicine 
(CPPM),29 the Institute for Precision Medicine at the 
Weill Cornell Medical College at New York–Presbyterian 
Hospital (New York, NY),30 the MD Anderson Cancer 
Centre Institute for Personalized Cancer Therapy 
(Houston, TX),31 the Centre for Translational Pathology 
at the University of Michigan (Ann Arbor, MI),32 and 
the Personalized Cancer Medicine Program at the Icahn 
Institute for Genomics and Multiscale Biology at Mount 

Key points

■■ In Precision Oncology 3.0 sophisticated algorithms analyse panomic data to 
hypothesize the molecular pathways that drive an individual patient’s tumour, 
and hypothesize personalized treatments, using combinations of narrowly 
targeted therapies

■■ At the molecular level, where Precision Oncology 3.0 operates, there are far 
too many combinations of driver mutations and possible treatments to be 
efficiently searched by current clinical trial methodologies

■■ The ‘Rapid Learning Precision Oncology’ paradigm considers each patient 
encounter as an experiment, continuously gathering and analysing all the data 
to inform each subsequent encounter with the same or similar patients 

■■ All patient encounters can be coordinated through a ‘Global Cumulative 
Treatment Analysis’ (GCTA) methodology, which chooses treatments according 
to their continuously updated performance statistics

■■ The Rapid Learning approach can help to overcome some of the technical and 
structural barriers facing Precision Oncology 3.0, including the facilitation of the 
off-label uses of targeted drugs
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Sinai Hospital (New York, NY).33 The Personalized Cancer 
Medicine Program at Mount Sinai Hospital is represen-
tative as, to date, it has run 20 cases, spanning a variety 
of cancer types (ovarian, breast, colorectal, glioblastoma, 

and pancreatic), six of which have yielded potentially 
clinically actionable findings, such as a relevant clinical 
trial or biomarker (Eric Schadt, personal communica-
tion to J. S.). Examples of commercial venders offering 
Precision Oncology 3.0 services include GeneKey, Inc. 
(Palo Alto, CA)34 and N‑of-One, Inc. (Lexington, MA).35

Unfortunately, we are still climbing a very steep learning 
curve. The high variability of cancer, the enormous amount 
of very complex data delivered by panomic technologies, 
the large number of targeted therapies under development, 
and the need for combined regimens, all distributed over 
a considerable, but distinctly finite number of patients, 
render cancer, in effect, a large number of rare diseases 
occupying a very high dimensional space (Box 1), with 
very few opportunities for action and observation in each 
subtype. To efficiently search a space of this nature, one 
needs to capture the learnings from as many patients 
and treatment experiments as possible in a continuously 
updated knowledge base (Box 1), and use that knowledge 
to guide each treatment decision across all patients in a 
coordinated manner that optimizes the tradeoffs between 
patient outcomes and knowledge acquisition. We call this 
process ‘Rapid Learning Precision Oncology’.

Rapid learning
In 2007, the Institute of Medicine (IOM) proposed a 
framework to use clinical data that is routinely collected, 
to drive scientific discovery; they called this framework 
‘rapid-learning health care’.36,37 The IOM envisioned using 
electronic health data to generate and test hypotheses 
about treatment effectiveness quickly and inexpensively, 
especially for patient cohorts typically excluded from 
clinical trials, such as elderly patients with advanced-stage 
disease, patients with multiple comorbidities, and patients 
on concomitant medications. Shortly thereafter, the IOM 
proposed a similar rapid-learning system for oncology,38,39 
in which several cases were developed to, for example, 
compare the effectiveness of multidrug combinations, and 
use the historical experiences of similar patients to help 
guide treatment choices for a current patient.

As early as 2008 some institutions had launched rapid-
learning efforts for Precision Oncology 2.0. For example, 
the Moffitt Cancer Center (Tampa, FL) launched Total 
Cancer Care®,40 creating an infrastructure (including 
specimen handling standard operating procedures [SOPs], 
data exchange standards, and patient consents) whereby 
17 community hospitals can send tumour specimens 
and clinical data to a centralized repository, maintained 
by Moffitt affiliate M2Gen®. In return, the originating 
hospital receives support from M2Gen® in undertaking 
collective analyses of stored data and specimens. This 
network can then be used for various collective transla-
tional research functions, such as cohort identification, 
clinical trial recruiting, and comparative effectiveness 
studies. For example, Ren et al.41 found 50 truncating 
mutations in JAK1 in 36 of 635 gynaecological tumours 
in the Total Cancer Care® (TCC®) tumour bank. Whereas 
cancer-associated protein tyrosine kinase (PTK) muta-
tions usually confer a gain-of-function, JAK1 deficient 
cancer cells are defective in IFN‑γ-induced LMP2 and 

Box 1 | Key terms

Patient encounter
Any interaction between a patient and a medical institution that leaves a record, 
for example seeing one’s doctor, having a test performed, or undergoing a treatment.

Companion diagnostics
Tests that help physicians make decisions about particular treatments. For example, 
specific mutations in genes encoding EGFR pathway proteins may predict differential 
sensitivity to cetuximab.

Molecular subtypes
Types of disease defined based on molecular characteristics, rather than, or 
perhaps in addition to, tissue of origin and/or histological characteristics. For 
cancer, molecular subtyping is usually based on genomic aberrations, but some 
approaches prefer to subtype cancers at the level of malfunctioning biochemical 
and signalling pathways.

Statistical reverse engineering
A computational method that combines data and knowledge to rank alternative 
hypotheses according to their statistical likelihood. For example, using expression 
data to rank different possible signalling pathway hypotheses according to those that  
are most likely to be malfunctioning in a given tumour.

Exceptional responders
Patients who respond unusually well or unusually poorly to a treatment, with respect 
to the typical response in a clinical trial. ‘Exceptional’ is not a well-defined statistical 
level (contrast: ‘statistical significance’), so its meaning must be specified at 
each application.

Dimensionality (high dimensional)
The dimensionality of data describes the number of different attributes of the 
observations. For example, the classical description of a tumour by tissue of 
origin and number of lymph nodes involved is ‘low dimensional’, versus the 
panomic description of a tumour, which may have tens or hundreds of thousands 
of dimensions, which is very ‘high dimensional’. Both low and high dimensionality 
data create challenges in analysis.

Knowledge base
A kind of database that contains ‘knowledge’ rather than ‘data’. The distinction 
between ‘knowledge’ and ‘data’ is philosophically subtle. Roughly speaking, whereas 
data are usually concrete observations—such as test results—knowledge is 
usually abstract, possibly putative, facts, such as that the EGFR signalling pathway 
comprises certain proteins. 

Unsupervised hierarchical clustering
A statistical process whereby high dimensionality observations are automatically 
arranged into clusters (that is, groups or categories) that reveal strong but hidden, 
and potentially complex, correlations among the observations. For example, 
tissue of origin is the most common current clinical categorization of cancers, but 
molecular oncology hypothesizes that with more data along many more dimensions, 
as is afforded by panomic analysis, a stronger categorization will arise based on 
aberrations at the genomic or pathway levels.

Software source code control
A development methodology widely used by software engineers to keep track 
of changes in computer programmes, commonly when there are many software 
engineers involved in the project. The method usually depends on specialized 
computer programmes that maintain a central repository of the source code and 
keep track of all the changes made, who made them, when and why they were made. 
This software also helps resolve conflicting changes.

Open source engineering
An engineering methodology wherein the implementation details of a mechanism or 
method, such as engineering plans or computer programmes, are publically revealed, 
and others are encouraged to examine, validate, and build on them. Compare, for 
example, the open pre-publication of the methods of a clinical trial, versus the closed 
algorithmic details of medical device that are considered trade secrets.
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TAP1 expression, loss of which inhibits presentation of 
tumour antigens. These results suggested that recurrent 
JAK1 truncating mutations could contribute to tumour 
immune evasion in the studied cancers.

In theory, applying the principles of rapid learning to 
Precision Oncology 3.0 would provide each patient with 
the best possible treatment based on the latest knowledge, 
while efficiently gathering evidence to advance our under-
standing of cancer mechanisms, molecular subtypes, and 
therapies. However, its implementation will require over-
coming a host of challenges, such as developing compu-
tational and analytical tools to distill the data from each 
patient into an accurate model of the driver networks, 
capturing the information about these networks under the 
influence of drug combinations, and rapidly translating 
this knowledge to support clinical decision making. Other 
challenges include coordinating the tens of thousands of 
separate patient encounters in a way that possible molecu-
lar subtypes and treatments can be identified efficiently 
to avoid repeating the same mistakes, while replicating 
the successes; and overcoming economic, social, and 
structural impediments such as obtaining early access to 
investigational new drugs (INDs), and convincing payers 
(such as insurance companies and national health plans) 
to cover rational, off‑label use of approved drugs.

Several technical approaches can address aspects of 
these challenges: seeking correlations in existing data 
(data mining or big data analysis), detailed analysis of 
particular cases (small data analysis), rapid scientific 
communications, and coordination through a process 
termed Global Cumulative Treatment Analysis (GCTA).

Big data analysis
The bioinformatic analysis of large datasets, based on 
recurring and co-occurring mutations, copy number 
variations, and aberrant RNA expression levels in 
patients with similar and different types of cancer, has 
long been a mainstay of cancer research.12 Precision 
Oncology relies heavily on big data results, such as the 
characterization of canonical pathways and statistical 
subtypes to understand and treat an individual patient. 
For example, analyses of the data deposited in The 
Cancer Genome Atlas have revealed that cancer genomes 
contain small numbers of recurrent mutations accom-
panied by much larger numbers of mutations that are 
rarely or never found in the tumours of other patients.42 
Although recurring mutations are probably involved 
in disease pathogenesis, rare or unique mutations 
likely represent a mixture of both driver mutations that 
collaborate to promote tumour growth, and passenger 
mutations that are uninvolved in cancer genesis or pro-
gression.43,44 Analysis of large gene-expression array data-
sets, obtained from matched tumour and normal tissue 
samples, juxtaposed with these driver mutations, led to 
the mapping of canonical cancer pathways.45–47 Statistical 
learning techniques can infer additional clinically action-
able information.48 For example, unsupervised hierarchi-
cal clustering (Box 1) applied to transcriptome data from 
patients with breast cancer recently revealed at least ten 
distinct molecular subtypes, which correlate well with 
observed therapeutic responses.49,50 These results have 
the potential to immediately impact the clinical manage
ment of breast cancer, which is usually based on just four 
subtypes: ER‑positive, PR‑positive, HER2-positive and 
triple-negative breast cancer.

Small data analysis
The ‘big data’ initiatives will provide important popula-
tion analyses, however, one can also learn incrementally 
from individual patients and small cohorts. Although 
the data from an individual tumour is generally insuffi
cient to map its pathways de novo, there is often enough 
data to identify which known oncogenic pathways 
are active, and even to recognize previously unknown 
perturbations, providing an immediate opportunity to 
expand our knowledge of the variability of such net-
works of pathways. The examples regarding the analysis 
of exceptional responders, described earlier, illustrate 
the potential of learning from small data. Motivated in 
part by those results, Deputy Director James Doroshow 
of the National Cancer Institute (NCI) issued a call at 
the 2013 American Association for Cancer Research 
(AACR) Annual Meeting for researchers to identify 
100 exceptional responders from failed trials for 
panomic analysis.28
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Figure 1 | Precision Oncology 3.0 in outline. Panomic data from tissue samples, 
obtained from tumours and surrounding healthy tissue, are analysed to produce a 
list of hypothetical aberrant driver networks. Drug candidates that target specific 
molecular pathways are selected and validated in models if possible; for example, 
in vitro (in tumour-derived cell lines) or in vivo (in mouse models). If the decision is 
made to move forward with that treatment, the patient is treated and monitored 
using rapid measures, such as imaging and serum biomarkers. Failure to respond, 
or disease recurrence, might lead one to choose a different drug or combination 
based upon a fresh analysis.
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Rapid communications
Rapid Learning demands a fast and flexible communi
cation channel.51 A recent study from the National 
Academy of Sciences warned that “biomedical research 
information can take years to trickle to doctors and 
patients, while wasteful health-care expenditures are 
carried out for treatments that are only effective in speci
fic subgroups”.52 One pioneering effort to facilitate the 
rapid communications of high quality biomedical infor-
mation is PLoS Currents,53 which offers scientists rapid 
publication in time-sensitive domains such as disasters 
and influenza, but also in less time-critical areas, such 
as Huntington’s disease. One of these, Evidence on 
Genomic Tests, is especially close to the spirit of a flex-
ible rapid communications channel for precision onco
logy. A similar initiative is being developed by Rapid 
Science Inc. (a non-profit spin-off of Cancer Commons, 
discussed below), which will publish articles on clini-
cally actionable findings, including knowledge-base 
updates, case reports, trial results, annotated rare vari-
ants, etc. All the contents of these online ‘e-journals’ 
are peer reviewed, PubMed indexed, and available 
under open access licences. In the best case, e‑journals 
such as these will be built on computational platforms 
inspired by software source code control (Box 1),54 per-
mitting articles to be version-controlled and revised 
to incorporate new results. Moreover, such platforms 
could be integrated with the platforms that maintain the 
Precision Oncology knowledge base so that when updates 
are made to the knowledge base, these could be published 
automatically in the e‑journal, and vice versa.

Coordination
To efficiently search a space as large and sparse as the 
one we are faced with in cancer, every patient encounter 
should be treated as an information gathering opportu-
nity. However, this is not enough. Treatment decisions 
must also be coordinated across all patient encounters 
to avoid unnecessary replication of either positive or 
negative experiments and to maximize the amount of 
information obtained from every encounter.

Clinical trials are examples of this sort of coordination, 
but classical trials are not efficient enough in either speed 
or breadth to search the vast space of cancer subtypes 
and treatments. Adaptive trials, one way to improve the 
efficiency of searching possible molecular subtypes and 
treatments,55–60 are now mainstream science. Researchers 
have recently taken the adaptive trial concept to its 
natural conclusion, proposing what we term ‘Global 
Cumulative Treatment Analysis’ (GCTA; Figure 3),61–65 
wherein decision making, data collection, and data 
analysis are continuous and integrated, and all available 
performance data for every rational therapeutic regimen 
is taken into account to rank treatment options at each 
decision point for every patient (Figure 3).

Notably, GCTA is neither a big data/data mining 
approach nor a purely rapid learning approach in the 
IOM sense, both of which primarily take advantage of 
the data resulting from mostly uncoordinated treatment 
events, or from clinical trials. By contrast, the GCTA 
approach is both global and prospective, explicitly 
manipulating the treatment rankings offered to a given 
patient at the point of care by combining all the available 
information across all patients, to ensure that the appro-
priate level of experimental variability is injected into 
the distribution of patients receiving different treatments 
(Figure 3). This coordination can only be accomplished if 
there is an effective rapid communication methodology 
in place, as described above.

Initiatives
CancerLinQ
The most ambitious implementation, to date, of IOM’s 
2010 rapid learning concept is ASCO’s CancerLinQ 
initiative,66 which aims to use data from electronic health 
records to improve quality of care, value, and outcomes 
in community oncology practices. ASCO expresses their 
vision for CancerLinQ as follows: “today, we know very 
little about most patients with cancer—from the molecu-
lar characteristics of their tumours to the outcomes of 
their treatments—because these details are locked away 
in unconnected electronic and paper records.”67,68 ASCO’s 
vision is to assemble and analyse all of the information 
in a central knowledge base that will grow continuously. 
CancerLinQ will “upload clinical data stored in elec-
tronic health records (EHRs) […] from patients in mul-
tiple practices; aggregate information from EHRs, new 
clinical trials and published guidelines; identify trends 
and associations between myriad variables, in order to 
generate new hypotheses; allow physicians and research-
ers to evaluate those hypotheses and determine which 
ones may lead to improved care in real-world settings; 
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Figure 2 | Precision Oncology 3.0 core algorithms and components. The heart 
of Precision Oncology 3.0 is driver network analysis and clinical targeting and 
treatment planning. Driver network analysis identifies key genes, called master 
regulators,13 which modulate established cancer hallmarks, such as aberrant 
proliferation, immune evasion, or circumvention of programmed cell death. 
Clinical targeting and treatment planning creates treatment hypotheses on the 
basis of the hypothesized master regulators, combined with clinical and 
contextual knowledge, such as drug approval status, patient history, drug 
interaction knowledge, and so on. Arrows in the master regulator network diagram 
indicate regulatory relationships within the signalling pathways. Dashed arrows 
indicate putative drugs that modulate identified master regulators. 
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and enable clinicians and researchers to quickly apply 
those conclusions, forming a continuous cycle of learn-
ing.”67 In March 2013, ASCO completed a CancerLinQ 
prototype, encompassing records from more than 
100,000 patients with breast cancer, and plans to proceed 
with a full-scale implementation.67,68

Watson
A project with similar goals to CancerLinQ is the collabor
ation between IBM’s Watson group and Memorial 
Sloan–Kettering Cancer Centre69,70 (MSKCC). Watson is  
a machine learning system, developed by IBM, which 
is being trained to recommend trials and individual-
ized therapies, based on knowledge of clinical oncology 
obtained from medical text books, journals, clinical trial 
databases, and many other sources. To date, Watson has 
analysed and incorporated the knowledge from millions of 
published articles and other sources. To apply this know
ledge, Watson must learn to evaluate the relevance of each 
bit of information to a patient case, taking into account 
the strength of evidence of the information (for example, 
results from a randomized trial are better than a case 
report, which is better than an animal study, and so on). 
In addition to reading, Watson is provided with training 
cases and feedback from experts.

Initial efforts at MSKCC have focused primarily 
on metastatic NSCLC and early stage breast cancer. 
Ultimately, the goal is to have Watson serve as the engine 
for rapid learning, recommending treatment options, and 
continuously improving these recommendations on the 

basis of the resulting outcomes. Given the complexity 
of cancer and the exponential rate at which knowledge 
is growing, it is inevitable that computational engines 
(such as Watson), as well as those that operate the GCTA 
process, will be an essential component of Rapid Learning 
Precision Oncology.

Cancer Commons
Whereas CancerLinQ is focused on electronic health 
records and Watson adds broad medical knowledge, the 
Cancer Commons initiative64,65 provides a rapid learn-
ing infrastructure specifically for Precision Oncology. In 
Cancer Commons, physicians, scientists, and patients col-
laborate in rapid learning communities, in which patients 
are treated in accord with the latest knowledge on molecu
lar subtypes and therapies. A peer-reviewed knowledge 
base, documents the community’s collective understand-
ing of cancer in terms of molecular subtypes, treatments, 
and trials, with links to relevant papers, data, case reports, 
news, and other resources.71–73 The goal of this initiative 
is to keep this knowledge continually updated—on the 
basis of each patient’s response, as well as all publicly avail-
able information—and to rapidly disseminate the updates 
through e‑journals, such as those discussed above.

To close the rapid learning loop, Cancer Commons 
gathers panomic and clinical data about individual 
patients from participating oncologists and the patients 
themselves, in a so-called Donate Your Data (DYD) reg-
istry.74 These data will be used initially to quantify, vali-
date, and refine information in the knowledge base. For 
example, physicians and patients can compare the actual 
response rates in a given tumour subtype when choosing 
among recommended treatments. If patients respond dif-
ferently to a given treatment, it might be appropriate to 
split that subtype, corresponding to responders and non-
responders, or to add a new subtype to accommodate a 
previously unseen molecular driver.

Both CancerLinQ and Cancer Commons plan to de-
identify all patient data and make it publicly available for 
research, in the spirit of the proposed ‘e-trials’75 wherein 
phase II/III trials are replaced by physicians dispensing 
experimental medicines and gathering response data 
in a central repository open for analysis by any quali-
fied medical researcher. The response of any patient or 
group of patients to a drug or treatment could then be 
compared with those of others in the database who were 
treated in a different manner or not at all. This could 
enable many treatment hypotheses that are tested today 
in investigator-initiated trials, to be studied at a fraction 
of the time and for a fraction of the cost. For example, 
exceptional responders could be identified, and their 
data retrospectively analysed to try and understand why 
they responded or recurred. If the results are promising, 
a small cohort of patients with the right subtype could be 
rapidly recruited through something like the DYD reg-
istry to validate the findings prospectively through the 
GCTA process.

A specific example of the potential of such a registry 
is provided by a pilot trial to test whether ipilimumab—
an antibody that inhibits immune system tolerance to 

No acceptable
choices at all

Yes

Yes

No clear best choice
or patient preference

Treat and
monitor

No response
or recurrence

Choose best choice for learning purposes

Precision
oncology

3.0

Response?

Panomics and other
patient information

Treatment hypotheses

Standard or clear
best choice,

and patient agrees?

Presentation

Figure 3 | Global Cumulative Treatment Analysis (GCTA). In current standard 
practice, a patient presents with certain symptoms, tests (such as a biopsy) are 
carried out and results are obtained, treatment choices are then ranked, usually on 
the basis of the treating physician’s knowledge and the standard of care, and one 
of these treatments is chosen. As treatment proceeds, progress is monitored, and 
either the disease resolves, or recurs, in which case more tests and latter line 
treatments are needed. If no standard treatment options are available, as is 
commonplace for advanced-stage cancer, the patient’s options may include  
non-standard treatments, or clinical trials. In Rapid Learning Precision Oncology 
decision making takes into account all the available performance data over all 
possible treatment experiences, augmenting the physician’s knowledge with 
systems-biology-based treatment ranking algorithms. Moreover, when there are 
no acceptable choices at all, one might embark on deep molecular analysis. 
Discoveries from this process, whether or not they benefit the present patient, are 
returned to the knowledge base to benefit future patients. When treatment options 
exist, but there is no clear superior one, the available choices are algorithmically 
reordered to reflect the information gathering value of each.61
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cancer cells, approved for treatment of melanoma—can 
act as a radiosensitizer.76–77 There are almost certainly 
enough patients with melanoma already receiving radio-
therapy for brain metastases, who are being treated with 
or without ipilimumab, that one could quickly test this 
hypothesis retrospectively if the data were collected and 
shared through a registry such as the Cancer Commons 
or CancerLinQ.

Technical issues and structural impediments
Panomic technologies, molecular models of cancer, tar-
geted therapies and computational algorithms for reverse-
engineering tumours are all advancing rapidly, and, 
except for the price of drugs, their costs are rapidly 
decreasing.78 Initiatives such as CancerLinQ and Cancer 
Commons are creating the data bases and knowledge 
bases to gather and analyse the details of patient encoun-
ters. However, there are still significant technical issues, 
as well as structural impediments, to be overcome before 
patients can reap the benefits of Precision Oncology 3.0.

Technical issues
All complex biomedical technologies face the problem 
of potentially unreliable data and knowledge processed 
by sophisticated and difficult-to-validate algorithms. 
In the long run, the acceptance of these algorithms will 
depend on experimental validation. Limited formal trials 
of such algorithms have been conducted,79 and we can 
expect to see an acceleration in experimental validation 
of Precision Oncology 3.0 algorithms and processes. For 
the foreseeable future, however, physicians bear ultimate 
responsibility for their patients, and so will have to make 
treatment decisions based upon their best judgement, 
potentially advised by systems such as Watson.

There are a number of technical ways to address con-
cerns of algorithmic, data, and knowledge validity, short 
of mounting large scale randomized controlled trials. In 
the case of algorithmic validity it is common practice 
to use the so-called open source engineering (Box 1), 
wherein the entire scientific or engineering commu-
nity conducts the equivalent of continuous peer review 
and improvement. This model has proved practical in 
the extremely difficult and sensitive domain of software 
security and privacy, including the algorithms used to 
secure medical software and data. In the security domain, 
open source algorithms are the norm (at least outside 
of military and espionage applications) and, indeed, are 
essentially demanded by the community.80 Similarly, 
many journals that deal with computational analyses of 
biological information require that the underlying algor
ithms are openly revealed. The idea, although somewhat 
controversial,81 is that the community as a whole can 
analyse and improve open algorithms, and that every-
one will thereby be using, or at least will have available to 
hand, the most highly validated algorithms all the time.

The quality control of data and knowledge can be 
managed through careful accounting of the statistical 
certainty of the underlying evidence on which they are 
based. For example, results from clinical trials may be 
considered to be more robust or have a higher level of 

certainty than those from case reports, and so on all the 
way down to anecdotes, which presumably have very 
low certainty. When a treatment hypothesis is computed 
using this data and knowledge, the levels of certainty of 
the underlying data and knowledge are carried forward 
and accumulated in the treatment hypothesis.82,83 As 
a result, hypotheses based on strong evidence will 
accumulate greater support, and will rank higher than 
those based on weaker evidence. Even subjective judge-
ments can be incorporated into the results through 
this mechanism.

Structural impediments
Precision Oncology 3.0 faces significant structural 
impediments that include incentivizing patients and 
organizations to share information and materials, 
persuading payers to cover rational, off-label use of 
approved drugs, and obtaining approval to use safe INDs 
alone or in combination with other drugs. Many of these 
problems come down to regulatory policies (such as the 
Health Insurance Portability and Accountability Act 
[HIPAA]) and specific technologies (such as the auto-
matic de-identification and re-identification of genomic 
data), and so are beyond the scope of this Review. 
However, the Rapid Learning paradigm can offer speci
fic assistance regarding timely and affordable access 
to experimental and off-label drugs. This is critical to 
Precision Oncology because physicians will ultimately 
use drugs as ‘molecular scalpels’ to reverse engineer and 
treat tumours.63

Generally, cancer INDs are not available for use in 
combination therapies until they receive regulatory 
approval, a process that can take years, and might never 
happen if they fail as monotherapies.84 Pharmaceutical 
companies are hesitant to provide INDs before they 
have significant demonstration of efficacy (for example, 
in animal models) because a negative result can delay 
the drug’s regulatory approval, or shelve it entirely.84 
Moreover, although physicians can legally prescribe 
approved drugs for nonapproved uses, payers are 
reluctant to provide reimbursement without previous 
evidence of efficacy, preferably through standard trials.

In the short term, two emerging clinical trial models, 
tailored for targeted therapies, can help Precision 
Oncology patients get access to experimental drugs: 
basket trials that test targeted therapies against a ‘basket’ 
of cancer types expressing that target,85 and bucket trials 
that genetically match patients to a ‘bucket’ of available 
targeted agents.85 An excellent example, combining 
elements of both, is the MATCH trial proposed by the 
NCI. The MATCH trial aims to enroll 1,000 patients with 
various advanced-stage cancers who have not responded 
to standard treatment, test their tumours for ≥100 action-
able mutations, and then match them to a large panel 
of targeted therapies, including INDs not yet approved 
for clinical use. Genomic analysis can, of course, also 
be used to match patients to any open trial offering the 
drugs they require, and pharmaceutical manufacturers 
and governments have been active in creating expanded 
access and compassionate use programmes.86
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In the long run, precision oncologists will need the 
ability to prescribe off-label and combination therapies 
outside of formal trials. Engaging drug developers, payers, 
and regulatory bodies in the rapid learning process, and 
aligning their incentives with those of patients and physi
cians, could make this possible. Specifically, pharma
ceutical companies could make INDs and off-label 
drugs available ‘on approval’. On the one hand, if the 
treatment is successful, payers reimburse and the drug 
developer gets paid. Such contingent reimbursement 
is a common practice among European national health 
plans.87 More importantly, the drug maker gets an early 
proof-of-concept in humans for a potentially valuable 
new indication. The GCTA process might then be used 
to quickly replicate the result in a small cohort of similar 
patients. In a similar way, the NCI sometimes increases 
dose levels in individual patients on phase I trials with a 
therapeutic intent (although they usually do not use the 
data from the higher dose level “because one cannot rule 
out an effect of the lower dose on the efficacy or toxicity 
of a subsequent, higher dose”).88 Given more time and 
money, a traditional trial could be mounted. However, 
if the treatment is unsuccessful, the knowledge gained 
and propagated through the network can be invaluable to 
future patients, and to the drug manufacturer itself, who 
can then reprioritize the pipeline, and the only cost is that 
of the tiny amount of drug used by that particular patient.

There is also the possibility that the drug will demon
strate a harmful side effect, especially an unexpected 
interaction in a novel combination. Without the benefit 
of the Precision Oncology 3.0 detailed reverse engineering 
process, this could be detrimental for the manufacturing 
of the drug. However, molecular reverse engineering could 
provide a rational explanation for an unexpected response. 
Thus, these negative results might have positive applica-
tion guidance thanks to Precision Oncology rather than 
leading to the shelving of the drug for any indication at all.

The Rapid Learning process will obviously contribute 
data to cancer research, but it can, in principle, be equally 
well driven by hypotheses generated in the lab. Cancer 
researchers routinely test combinations of approved 
drugs or INDs on lab-grown tumours derived from 
specific patients. Today, if an experimental therapy elicits 
a dramatic response in the lab, the investigator will typi-
cally propose a clinical trial, which can take years to plan 
and run. Instead, under the Rapid Learning Precision 
Oncology model, the researcher could directly contact 
the very patient from whom the specimen was obtained, 
or patients with similar driver networks, and immediately 
mount either a retrospective clinical study using a central-
ized database, or mount a rapid prospective clinical study 
through the GCTA process.

Despite these issues and obstacles, interest in Precision 
Oncology 3.0 remains high, as evidenced by the number 
of recent publications and centres exploring it. It is likely, 
however, that at least in the near term, it will be used 
in parallel with traditional methods, or when all other 
options have been exhausted.

Conclusions
The conventional path for new anticancer drugs from 
the lab to the clinic extends over years via an increasingly 
expensive series of trials. Large, slow, drug-centric trials 
of this sort are no match for the immense dimension
ality of the cancer problem. The therapeutically moti-
vated experimentation of Rapid Learning Precision 
Oncology is predicated on the belief that the more we 
understand about how cancer works in each patient, the 
better positioned we are to help both that patient, and 
all that follow. Moreover, by tightly integrating research 
and clinical care around and across individual patients, 
this paradigm has the potential to dramatically acceler-
ate knowledge acquisition and reduce delays in getting 
promising treatments into the clinic. Developers can 
get early validation of new drugs by testing them on 
patients with the right mutations, who are otherwise out 
of options. Physicians can share and learn from the thou-
sands of clinical experiments that take place daily, but 
which are rarely deeply analysed, and even more rarely 
reported in the literature. Scientists can use preclinical 
experiments on a patient’s cell line or xenograft to inform 
that patient’s treatment. Most importantly, patients can 
be treated in accord with the best available treatments 
and the world’s collective knowledge on how and when 
to use them.

To fully realize these benefits, CancerLinQ, the various 
Watson collaborations, Cancer Commons, and other 
nascent Rapid Learning Precision Oncology efforts 
around the world,89 should be integrated and coordi-
nated through a GCTA-like process to, in effect, run a 
huge adaptive clinical trial, whose goal is to continu-
ously improve patient outcomes. Ultimately everyone 
involved in Precision Oncology should be an active 
participant in the Rapid Learning process so that every 
patient encounter counts.
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